HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Supplemental carnitine affects the microRNA expression profile in skeletal muscle of obese Zucker rats.

AbstractBACKGROUND:
In the past, numerous studies revealed that supplementation with carnitine has multiple effects on performance characteristics and gene expression in livestock and model animals. The molecular mechanisms underlying these observations are still largely unknown. Increasing evidence suggests that microRNAs (miRNAs), a class of small non-coding RNA molecules, play an important role in post-transcriptional regulation of gene expression and thereby influencing several physiological and pathological processes. Based on these findings, the aim of the present study was to investigate the influence of carnitine supplementation on the miRNA expression profile in skeletal muscle of obese Zucker rats using miRNA microarray analysis.
RESULTS:
Obese Zucker rats supplemented with carnitine had higher concentrations of total carnitine in plasma and muscle than obese control rats (P < 0.05). miRNA expression profiling in skeletal muscle revealed a subset of 152 miRNAs out of the total number of miRNAs analysed (259) were identified to be differentially regulated (adjusted P-value < 0.05) by carnitine supplementation. Compared to the obese control group, 111 miRNAs were up-regulated and 41 down-regulated by carnitine supplementation (adjusted P-value < 0.05). 14 of these miRNAs showed a log2 ratio ≥ 0.5 and 7 miRNAs showed a log2 ratio ≤ -0.5 (adjusted P-value < 0.05). After confirmation by qRT-PCR, 11 miRNAs were found to be up-regulated and 6 miRNAs were down-regulated by carnitine supplementation (P < 0.05). Furthermore, a total of 1,446 target genes within the validated miRNAs were revealed using combined three bioinformatic algorithms. Analysis of Gene Ontology (GO) categories and KEGG pathways of the predicted targets revealed that carnitine supplementation regulates miRNAs that target a large set of genes involved in protein-localization and -transport, regulation of transcription and RNA metabolic processes, as well as genes involved in several signal transduction pathways, like ubiquitin-mediated proteolysis and longterm depression, are targeted by the miRNAs regulated by carnitine supplementation.
CONCLUSION:
The present study shows for the first time that supplementation of carnitine affects a large set of miRNAs in skeletal muscle of obese Zucker rats suggesting a novel mechanism through which carnitine exerts its multiple effects on gene expression, which were observed during the past.
AuthorsJanine Keller, Robert Ringseis, Klaus Eder
JournalBMC genomics (BMC Genomics) Vol. 15 Pg. 512 (Jun 21 2014) ISSN: 1471-2164 [Electronic] England
PMID24952657 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • MicroRNAs
  • RNA, Messenger
  • Carnitine
Topics
  • Animals
  • Carnitine (metabolism)
  • Cluster Analysis
  • Computational Biology (methods)
  • Dietary Supplements
  • Gene Expression Profiling
  • Gene Expression Regulation
  • Male
  • MicroRNAs (genetics)
  • Muscle, Skeletal (metabolism)
  • Obesity (genetics, metabolism)
  • RNA Interference
  • RNA, Messenger (genetics)
  • Rats
  • Rats, Zucker
  • Reproducibility of Results

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: