HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Enteric bacterial protein AvrA promotes colonic tumorigenesis and activates colonic beta-catenin signaling pathway.

Abstract
Salmonella infections can become chronic and increase the risk of cancer. The mechanisms by which specific Salmonella organisms contribute to cancer, however, are still unknown. Live and attenuated Salmonella are used as vectors to target cancer cells, but there have been no systematic studies of the oncogenic potential of chronic Salmonella infections in cancer models. AvrA, a pathogenic product of Salmonella, is inserted into host cells during infection and influences eukaryotic cell pathways. In the current study, we colonized mice with Salmonella AvrA-sufficient or AvrA-deficient Salmonella typhimirium strains and induced inflammation-associated colon cancer by azoxymethane/dextran sulfate sodium (AOM/DSS). We confirmed Salmonella persisted in the colon for up to 45 weeks. Salmonella was identified not only in epithelial cells on the colonic luminal surface and base of the crypts but also in invading tumors. Tumor incidence in the AvrA+infected group was 100% compared with 51.4% in the AOM/DSS group without bacterial gavage and 56.3% in mice infected with the AvrA- strain. Infection with AvrA+ strain also altered tumor distribution from the distal to proximal colon that might reflect changes in the microbiome. AvrA-expressing bacteria also upregulated beta-catenin signaling as assessed by decreased beta-catenin ubiquitination, increased nuclear beta-catenin and increased phosphorylated-beta-catenin (Ser552), a marker of proliferating stem-progenitor cells. Other β-catenin targets increased by AvrA included Bmi1, a cancer stem cell marker, matrix metalloproteinase-7, and cyclin D1. In summary, AvrA-expressing Salmonella infection activates β-catenin signals and enhances colonic tumorigenesis. Our findings provide important new mechanistic insights into how a bacterial protein targets proliferating stem-progenitor cells and contributes to cancer development. Our observations also raise a note of caution regarding the use of mutant Salmonella organisms as vectors for anti-cancer therapy. Finally, these studies could suggest biomarkers (such as AvrA level in gut) to assess cancer risk in susceptible individuals and infection-related dysregulation of β-catenin signaling in cancer.
AuthorsR Lu, S Wu, Y-G Zhang, Y Xia, X Liu, Y Zheng, H Chen, K L Schaefer, Z Zhou, M Bissonnette, L Li, J Sun
JournalOncogenesis (Oncogenesis) Vol. 3 Pg. e105 (Jun 09 2014) ISSN: 2157-9024 [Print] United States
PMID24911876 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: