HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Improved methodology to obtain large quantities of correctly folded recombinant N-terminal extracellular domain of the human muscle acetylcholine receptor for inducing experimental autoimmune myasthenia gravis in rats.

AbstractINTRODUCTION:
Human myasthenia gravis (MG) is an autoimmune disorder of the neuromuscular system. Experimental autoimmune myasthenia gravis (EAMG) is a well-established animal model for MG that can be induced by active immunization with the Torpedo californica-derived acetylcholine receptor (AChR). Due to the expensive cost of purifying AChR from Torpedo californica, the development of an easier and more economical way of inducing EAMG remains critically needed.
MATERIAL AND METHODS:
Full-length cDNA of the human skeletal muscle AChR α1 subunit was obtained from TE671 cells. The DNA fragment encoding the extracellular domain (ECD) was then amplified by polymerase chain reaction (PCR) and inserted into pET-16b. The reconstructed plasmid was transformed into the host strain BL21(DE3)pLysS, which was derived from Escherichia coli. Isopropyl-β-D-thiogalactopyranoside (IPTG) was used to induce the expression of the N-terminal ECD. The produced protein was purified with immobilized Ni(2+) affinity chromatography and refolded by dialysis.
RESULTS:
The recombinant protein was efficiently refolded to soluble active protein, which was verified by ELISA. After immunization with the recombinant ECD, all rats acquired clinical signs of EAMG. The titer of AChR antibodies in the serum was significantly higher in the EAMG group than in the control group, indicating successful induction of EAMG.
CONCLUSIONS:
We describe an improved procedure for refolding recombinant ECD of human muscle AChR. This improvement allows for the generation of large quantities of correctly folded recombinant ECD of human muscle AChR, which provides for an easier and more economical way of inducing the animal model of MG.
AuthorsChenjing Sun, Hongliang Zhang, Jiang Xu, Jie Gao, Xiaokun Qi, Zhuyi Li
JournalArchives of medical science : AMS (Arch Med Sci) Vol. 10 Issue 2 Pg. 389-95 (May 12 2014) ISSN: 1734-1922 [Print] Poland
PMID24904677 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: