HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Resistance mechanisms for the Bruton's tyrosine kinase inhibitor ibrutinib.

AbstractBACKGROUND:
Ibrutinib is an irreversible inhibitor of Bruton's tyrosine kinase (BTK) and is effective in chronic lymphocytic leukemia (CLL). Resistance to irreversible kinase inhibitors and resistance associated with BTK inhibition have not been characterized. Although only a small proportion of patients have had a relapse during ibrutinib therapy, an understanding of resistance mechanisms is important. We evaluated patients with relapsed disease to identify mutations that may mediate ibrutinib resistance.
METHODS:
We performed whole-exome sequencing at baseline and the time of relapse on samples from six patients with acquired resistance to ibrutinib therapy. We then performed functional analysis of identified mutations. In addition, we performed Ion Torrent sequencing for identified resistance mutations on samples from nine patients with prolonged lymphocytosis.
RESULTS:
We identified a cysteine-to-serine mutation in BTK at the binding site of ibrutinib in five patients and identified three distinct mutations in PLCγ2 in two patients. Functional analysis showed that the C481S mutation of BTK results in a protein that is only reversibly inhibited by ibrutinib. The R665W and L845F mutations in PLCγ2 are both potentially gain-of-function mutations that lead to autonomous B-cell-receptor activity. These mutations were not found in any of the patients with prolonged lymphocytosis who were taking ibrutinib.
CONCLUSIONS:
Resistance to the irreversible BTK inhibitor ibrutinib often involves mutation of a cysteine residue where ibrutinib binding occurs. This finding, combined with two additional mutations in PLCγ2 that are immediately downstream of BTK, underscores the importance of the B-cell-receptor pathway in the mechanism of action of ibrutinib in CLL. (Funded by the National Cancer Institute and others.).
AuthorsJennifer A Woyach, Richard R Furman, Ta-Ming Liu, Hatice Gulcin Ozer, Marc Zapatka, Amy S Ruppert, Ling Xue, Daniel Hsieh-Hsin Li, Susanne M Steggerda, Matthias Versele, Sandeep S Dave, Jenny Zhang, Ayse Selen Yilmaz, Samantha M Jaglowski, Kristie A Blum, Arletta Lozanski, Gerard Lozanski, Danelle F James, Jacqueline C Barrientos, Peter Lichter, Stephan Stilgenbauer, Joseph J Buggy, Betty Y Chang, Amy J Johnson, John C Byrd
JournalThe New England journal of medicine (N Engl J Med) Vol. 370 Issue 24 Pg. 2286-94 (Jun 12 2014) ISSN: 1533-4406 [Electronic] United States
PMID24869598 (Publication Type: Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't)
Chemical References
  • Piperidines
  • Pyrazoles
  • Pyrimidines
  • Receptors, Antigen, B-Cell
  • ibrutinib
  • Protein-Tyrosine Kinases
  • Agammaglobulinaemia Tyrosine Kinase
  • BTK protein, human
  • Phospholipase C gamma
  • Adenine
Topics
  • Adenine (analogs & derivatives)
  • Agammaglobulinaemia Tyrosine Kinase
  • Aged
  • Binding Sites (genetics)
  • Drug Resistance, Neoplasm (genetics)
  • Exome
  • Humans
  • Leukemia, Lymphocytic, Chronic, B-Cell (drug therapy, genetics)
  • Middle Aged
  • Phospholipase C gamma (genetics, metabolism)
  • Piperidines
  • Point Mutation
  • Protein-Tyrosine Kinases (antagonists & inhibitors, genetics)
  • Pyrazoles (pharmacology, therapeutic use)
  • Pyrimidines (pharmacology, therapeutic use)
  • Receptors, Antigen, B-Cell (metabolism)
  • Recurrence
  • Sequence Analysis, DNA

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: