HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Yeast luminometric and Xenopus oocyte electrophysiological examinations of the molecular mechanosensitivity of TRPV4.

Abstract
TRPV4 (Transient Receptor Potentials, vanilloid family, type 4) is widely expressed in vertebrate tissues and is activated by several stimuli, including by mechanical forces. Certain TRPV4 mutations cause complex hereditary bone or neuronal pathologies in human. Wild-type or mutant TRPV4 transgenes are commonly expressed in cultured mammalian cells and examined by Fura-2 fluorometry and by electrodes. In terms of the mechanism of mechanosensitivity and the molecular bases of the diseases, the current literature is confusing and controversial. To complement existing methods, we describe two additional methods to examine the molecular properties of TRPV4. (1) Rat TRPV4 and an aequorin transgene are transformed into budding yeast. A hypo-osmtic shock of the transformant population yields a luminometric signal due to the combination of aequorin with Ca(2+), released through the TRPV4 channel. Here TRPV4 is isolated from its usual mammalian partner proteins and reveals its own mechanosensitivity. (2) cRNA of TRPV4 is injected into Xenopus oocytes. After a suitable period of incubation, the macroscopic TRPV4 current is examined with a two-electrode voltage clamp. The current rise upon removal of inert osmoticum from the oocyte bath is indicative of mechanosensitivity. The microAmpere (10(-6) to 10(-4) A) currents from oocytes are much larger than the subnano- to nanoAmpere (10(-10) to 10(-9) A) currents from cultured cells, yielding clearer quantifications and more confident assessments. Microscopic currents reflecting the activities of individual channel proteins can also be directly registered under a patch clamp, in on-cell or excised mode. The same oocyte provides multiple patch samples, allowing better data replication. Suctions applied to the patches can activate TRPV4 to directly assess mechanosensitivity. These methods should also be useful in the study of other types of TRP channels.
AuthorsJinfeng Teng, Stephen Loukin, Xinliang Zhou, Ching Kung
JournalJournal of visualized experiments : JoVE (J Vis Exp) Issue 82 (Dec 31 2013) ISSN: 1940-087X [Electronic] United States
PMID24637628 (Publication Type: Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't, Video-Audio Media)
Chemical References
  • TRPC Cation Channels
  • TRPC4 ion channel
Topics
  • Animals
  • Biomechanical Phenomena
  • Luminescent Measurements (methods)
  • Oocytes (metabolism, physiology)
  • Patch-Clamp Techniques (methods)
  • Plasmids (genetics)
  • Polymerase Chain Reaction (methods)
  • Rats
  • Saccharomyces cerevisiae (genetics, metabolism)
  • TRPC Cation Channels (biosynthesis, genetics)
  • Transgenes
  • Xenopus laevis (metabolism, physiology)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: