HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

The potential therapeutic effect of guanosine after cortical focal ischemia in rats.

AbstractBACKGROUND AND PURPOSE:
Stroke is a devastating disease. Both excitotoxicity and oxidative stress play important roles in ischemic brain injury, along with harmful impacts on ischemic cerebral tissue. As guanosine plays an important neuroprotective role in the central nervous system, the purpose of this study was to evaluate the neuroprotective effects of guanosine and putative cerebral events following the onset of permanent focal cerebral ischemia.
METHODS:
Permanent focal cerebral ischemia was induced in rats by thermocoagulation. Guanosine was administered immediately, 1 h, 3 h and 6 h after surgery. Behavioral performance was evaluated by cylinder testing for a period of 15 days after surgery. Brain oxidative stress parameters, including levels of ROS/RNS, lipid peroxidation, antioxidant non-enzymatic levels (GSH, vitamin C) and enzymatic parameters (SOD expression and activity and CAT activity), as well as glutamatergic parameters (EAAC1, GLAST and GLT1, glutamine synthetase) were analyzed.
RESULTS:
After 24 h, ischemic injury resulted in impaired function of the forelimb, caused brain infarct and increased lipid peroxidation. Treatment with guanosine restored these parameters. Oxidative stress markers were affected by ischemic insult, demonstrated by increased ROS/RNS levels, increased SOD expression with reduced SOD activity and decreased non-enzymatic (GSH and vitamin C) antioxidant defenses. Guanosine prevented increased ROS/RNS levels, decreased SOD activity, further increased SOD expression, increased CAT activity and restored vitamin C levels. Ischemia also affected glutamatergic parameters, illustrated by increased EAAC1 levels and decreased GLT1 levels; guanosine reversed the decreased GLT1 levels and did not affect the EAAC1 levels.
CONCLUSION:
The effects of brain ischemia were strongly attenuated by guanosine administration. The cellular mechanisms involved in redox and glutamatergic homeostasis, which were both affected by the ischemic insult, were also modulated by guanosine. These observations reveal that guanosine may represent a potential therapeutic agent in cerebral ischemia by preventing oxidative stress and excitotoxicity.
AuthorsGisele Hansel, Denise Barbosa Ramos, Camila Aguilar Delgado, Débora Guerini Souza, Roberto Farina Almeida, Luis Valmor Portela, André Quincozes-Santos, Diogo Onofre Souza
JournalPloS one (PLoS One) Vol. 9 Issue 2 Pg. e90693 ( 2014) ISSN: 1932-6203 [Electronic] United States
PMID24587409 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Excitatory Amino Acid Transporter 3
  • Glutamate Plasma Membrane Transport Proteins
  • Neuroprotective Agents
  • Reactive Oxygen Species
  • Slc1a1 protein, rat
  • Guanosine
  • Nitric Oxide
  • Catalase
  • Superoxide Dismutase
  • Glutamate-Ammonia Ligase
  • Glutathione
  • Ascorbic Acid
Topics
  • Animals
  • Ascorbic Acid (metabolism)
  • Blotting, Western
  • Brain Injuries (metabolism, physiopathology, prevention & control)
  • Brain Ischemia (etiology, physiopathology)
  • Catalase (metabolism)
  • Dose-Response Relationship, Drug
  • Drug Administration Schedule
  • Electrocoagulation (adverse effects)
  • Excitatory Amino Acid Transporter 3 (metabolism)
  • Exploratory Behavior (drug effects, physiology)
  • Forelimb (drug effects, physiopathology)
  • Glutamate Plasma Membrane Transport Proteins (metabolism)
  • Glutamate-Ammonia Ligase (metabolism)
  • Glutathione (metabolism)
  • Guanosine (administration & dosage, pharmacology)
  • Lipid Peroxidation (drug effects)
  • Male
  • Neuroprotective Agents (pharmacology)
  • Nitric Oxide (metabolism)
  • Rats, Wistar
  • Reactive Oxygen Species (metabolism)
  • Superoxide Dismutase (metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: