HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Characterization of the dissociation behavior of gas-phase protonated and methylated lactones.

Abstract
The dissociation behavior of gas-phase protonated and methylated four-, five-, six-, and seven-membered ring lactones, some with methyl substituents in various positions, has been characterized by using a quadrupole ion trap mass spectrometer and a triple quadrupole mass spectrometer. The energy dependence of collisionally activated dissociation pathways was determined by energy-resolved mass spectrometry, and the dissociation behavior of the various protonated lactones was compared to that observed for protonated cyclic ketones and ethers of analogous ring size. The protonated cyclic ethers and ketones predominantly dissociated via dehydration, whereas the protonated lactones dissociated via losses of an alkene, ketene, and water. The dissociation behavior of the gas-phase methylated lactones formed from ion/molecule reactions with dimethyl ether ions was compared to the collisionally activated dissociation behavior of isomeric protonated methyl-substituted lactones. The methylation experiments indicated that the gas-phase addition of a methyl group may dramatically alter the favored dissociation pathways when compared to the simple protonated ions.
AuthorsT Donovan, J Brodbelt
JournalJournal of the American Society for Mass Spectrometry (J Am Soc Mass Spectrom) Vol. 3 Issue 1 Pg. 47-59 (Jan 1992) ISSN: 1044-0305 [Print] United States
PMID24242837 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: