HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

G-CSF receptor positive neuroblastoma subpopulations are enriched in chemotherapy-resistant or relapsed tumors and are highly tumorigenic.

Abstract
Neuroblastoma is a neural crest-derived embryonal malignancy, which accounts for 13% of all pediatric cancer mortality, primarily due to tumor recurrence. Therapy-resistant cancer stem cells are implicated in tumor relapse, but definitive phenotypic evidence of the existence of these cells has been lacking. In this study, we define a highly tumorigenic subpopulation in neuroblastoma with stem cell characteristics, based on the expression of CSF3R, which encodes the receptor for granulocyte colony-stimulating factor (G-CSF). G-CSF receptor positive (aka G-CSFr(+) or CD114(+)) cells isolated from a primary tumor and the NGP cell line by flow cytometry were highly tumorigenic and capable of both self-renewal and differentiation to progeny cells. CD114(+) cells closely resembled embryonic and induced pluripotent stem cells with respect to their profiles of cell cycle, miRNA, and gene expression. In addition, they reflect a primitive undifferentiated neuroectodermal/neural crest phenotype revealing a developmental hierarchy within neuroblastoma tumors. We detected this dedifferentiated neural crest subpopulation in all established neuroblastoma cell lines, xenograft tumors, and primary tumor specimens analyzed. Ligand activation of CD114 by the addition of exogenous G-CSF to CD114(+) cells confirmed intact STAT3 upregulation, characteristic of G-CSF receptor signaling. Together, our data describe a novel distinct subpopulation within neuroblastoma with enhanced tumorigenicity and a stem cell-like phenotype, further elucidating the complex heterogeneity of solid tumors such as neuroblastoma. We propose that this subpopulation may represent an additional target for novel therapeutic approaches to this aggressive pediatric malignancy.
AuthorsDanielle M Hsu, Saurabh Agarwal, Ashley Benham, Cristian Coarfa, Denae N Trahan, Zaowen Chen, Paris N Stowers, Amy N Courtney, Anna Lakoma, Eveline Barbieri, Leonid S Metelitsa, Preethi Gunaratne, Eugene S Kim, Jason M Shohet
JournalCancer research (Cancer Res) Vol. 73 Issue 13 Pg. 4134-46 (Jul 01 2013) ISSN: 1538-7445 [Electronic] United States
PMID23687340 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Copyright©2013 AACR.
Chemical References
  • MYCN protein, mouse
  • MicroRNAs
  • N-Myc Proto-Oncogene Protein
  • Proto-Oncogene Proteins
  • Receptors, Granulocyte Colony-Stimulating Factor
  • STAT3 Transcription Factor
  • STAT3 protein, human
  • TP53 protein, human
  • Tumor Suppressor Protein p53
  • Granulocyte Colony-Stimulating Factor
Topics
  • Animals
  • Cell Differentiation
  • Cell Line, Tumor
  • Cell Transformation, Neoplastic (metabolism)
  • Drug Resistance, Neoplasm
  • Female
  • Granulocyte Colony-Stimulating Factor (physiology)
  • Humans
  • Mice
  • Mice, Inbred NOD
  • Mice, SCID
  • Mice, Transgenic
  • MicroRNAs (genetics, metabolism)
  • N-Myc Proto-Oncogene Protein
  • Neoplasm Recurrence, Local (metabolism)
  • Neoplasm Transplantation
  • Neoplastic Stem Cells (metabolism)
  • Neuroblastoma (drug therapy, metabolism, pathology)
  • Oligonucleotide Array Sequence Analysis
  • Phenotype
  • Proto-Oncogene Proteins (genetics)
  • Receptors, Granulocyte Colony-Stimulating Factor (metabolism)
  • STAT3 Transcription Factor (metabolism)
  • Side-Population Cells (metabolism)
  • Transcriptome
  • Tumor Suppressor Protein p53 (metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: