HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Predicted binding of certain antifilarial compounds with glutathione-S-transferase of human Filariids.

AbstractUNLABELLED:
: Glutathione-S-transferase is a major phase-II detoxification enzyme in parasitic helminthes. Previous research highlights the importance of GSTs in the establishment of chronic infections in cytotoxic microenvironments. Filarial nematodes depend on these detoxification enzymes for their survival in the host. GST plays an important role in filariasis and other diseases. GST from W.bancrofti and B.malayi are very much different from human GST. This structural difference makes GST potential chemotherapeutic targets for antifilarial treatment. In this study we have checked the efficacy of some well known antifilarial compounds against GST from B.malayi and W.bancrofti. The structure of BmGST was modeled using modeller9v10 and was submitted to PMDB. Molecular docking study reveals arbindazole to be the most potent compounds against GST from both the filarial parasites. Role of some residues playing important role in the binding of compounds within the active site of GST has also been revealed in the present study. The BmGST and WbGST structural information and docking studies could aid in screening new antifilarials or selective inhibitors for chemotherapy against filariasis.
ABBREVIATIONS:
GST - Glutathione-S-transferase, Bm - Brugia malayi, Wb - Wuchereria bancrofti.
AuthorsMohd Saeed, Mohd Hassan Baig, Preeti Bajpai, Ashwini Kumar Srivastava, Khurshid Ahmad, Huma Mustafa
JournalBioinformation (Bioinformation) Vol. 9 Issue 5 Pg. 233-7 ( 2013) ISSN: 0973-2063 [Print] Singapore
PMID23516334 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: