HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Neurosteroids as regenerative agents in the brain: therapeutic implications.

Abstract
Regenerative therapeutics hold the promise of self-renewal and repair. Ageing and age-associated neurodegenerative diseases are marked by a decline in self-renewal and repair, but a capacity for regeneration is retained. The challenge faced by researchers developing molecular therapeutics to promote self-renewal in the nervous system is to activate regenerative and repair pathways often in the context of progressive degeneration. Neurosteroids regulate both regeneration and repair systems in the brain, and among this class of molecules, allopregnanolone has been broadly investigated for its role to promote regeneration in both the central and peripheral nervous systems. In the brain, allopregnanolone induced generation and survival of new neurons in the hippocampus of both aged mice and mice with Alzheimer disease, accompanied by restoration of associative learning and memory function. In the brain of mice with Alzheimer disease, allopregnanolone increased liver X receptor and pregnane X receptor expression, reduced amyloid-β and microglial activation, and increased markers of myelin and white matter generation. Therapeutic windows for efficacy of allopregnanolone were evident in the brains of mice with both normal ageing and Alzheimer disease. Allopregnanolone dose and a regenerative treatment regimen of intermittent allopregnanolone exposure were determining factors regulating therapeutic efficacy. Allopregnanolone serves as proof of concept for therapeutics that target endogenous regeneration, windows of therapeutic opportunity for regeneration, and critical system biology factors that will determine the efficacy of regeneration.
AuthorsRoberta D Brinton
JournalNature reviews. Endocrinology (Nat Rev Endocrinol) Vol. 9 Issue 4 Pg. 241-50 (Apr 2013) ISSN: 1759-5037 [Electronic] England
PMID23438839 (Publication Type: Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S., Review)
Chemical References
  • Neurotransmitter Agents
  • Pregnanolone
Topics
  • Alzheimer Disease (drug therapy, metabolism)
  • Animals
  • Brain (drug effects, metabolism)
  • Humans
  • Neurotransmitter Agents (metabolism, therapeutic use)
  • Pregnanolone (metabolism, therapeutic use)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: