HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Identification of a small molecule that modifies MglA/SspA interaction and impairs intramacrophage survival of Francisella tularensis.

Abstract
The transcription factors MglA and SspA of Francisella tularensis form a heterodimer complex and interact with the RNA polymerase to regulate the expression of the Francisella pathogenicity island (FPI) genes. These genes are essential for this pathogen's virulence and survival within host cells. In this study, we used a small molecule screening to identify quinacrine as a thermal stabilizing compound for F. tularensis SCHU S4 MglA and SspA. A bacterial two-hybrid system was used to analyze the in vivo effect of quinacrine on the heterodimer complex. The results show that quinacrine affects the interaction between MglA and SspA, indicated by decreased β-galactosidase activity. Further in vitro analyses, using size exclusion chromatography, indicated that quinacrine does not disrupt the heterodimer formation, however, changes in the alpha helix content were confirmed by circular dichroism. Structure-guided site-directed mutagenesis experiments indicated that quinacrine makes contact with amino acid residues Y63 in MglA, and K97 in SspA, both located in the "cleft" of the interacting surfaces. In F. tularensis subsp. novicida, quinacrine decreased the transcription of the FPI genes, iglA, iglD, pdpD and pdpA. As a consequence, the intramacrophage survival capabilities of the bacteria were affected. These results support use of the MglA/SspA interacting surface, and quinacrine's chemical scaffold, for the design of high affinity molecules that will function as therapeutics for the treatment of Tularemia.
AuthorsAlgevis P Wrench, Christopher L Gardner, Claudio F Gonzalez, Graciela L Lorca
JournalPloS one (PLoS One) Vol. 8 Issue 1 Pg. e54498 ( 2013) ISSN: 1932-6203 [Electronic] United States
PMID23372736 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Adhesins, Bacterial
  • Bacterial Proteins
  • SspA protein, bacteria
  • Transcription Factors
  • DNA-Directed RNA Polymerases
  • beta-Galactosidase
  • Quinacrine
Topics
  • Adhesins, Bacterial (chemistry, metabolism)
  • Bacterial Proteins (antagonists & inhibitors, chemistry, metabolism)
  • DNA-Directed RNA Polymerases (antagonists & inhibitors, chemistry, metabolism)
  • Francisella tularensis (chemistry, drug effects, genetics, pathogenicity)
  • Gene Expression Regulation, Bacterial (drug effects)
  • Humans
  • Macrophages (microbiology)
  • Molecular Docking Simulation
  • Mutagenesis, Site-Directed
  • Protein Multimerization
  • Protein Structure, Secondary
  • Quinacrine (chemistry, pharmacology)
  • Transcription Factors (antagonists & inhibitors, chemistry, metabolism)
  • Transcription, Genetic (drug effects)
  • Virulence
  • beta-Galactosidase (metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: