HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Synthetic flavanones augment the anticancer effect of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL).

Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is considered as the most promising anticancer agent in the TNF superfamily because of its selective cytotoxicity against tumor cells versus normal primary cells. However, as more tumor cells are reported to be resistant to TRAIL-mediated death, it is important to develop new therapeutic strategies to overcome this resistance. Flavonoids have been shown to sensitize cancer cells to TRAIL-induced apoptosis. The aim of this study was to examine the cytotoxic and apoptotic activities of TRAIL on HeLa cancer cells in combination with two synthetic compounds: 6-hydroxyflavanone (6-HF) and its derivative 6-propionoxy-flavanone (6-PF) and to determine the mechanism by which the flavanones overcome the TRAIL-resistance. The cytotoxicity was measured by MTT and LDH assays. The apoptosis was detected by annexin V-FITC fluorescence staining in flow cytometry and microscopy. Death receptor (TRAIL-R1/DR4 and TRAIL-R2/DR5) expression were analysed using flow cytometry. Mitochondrial membrane potential was evaluated using DePsipher staining by fluorescence microscopy. The synthetic flavanones enhanced TRAIL-induced apoptosis in HeLa cells through increased expression of TRAIL-R2 death receptor and reduction of mitochondrial membrane potential. Our study indicates that the 6-HF and 6-PF augmented the anticancer effects of TRAIL and confirm a potential use of flavanones in TRAIL-based anticancer therapy and prevention.
AuthorsEwelina Szliszka, Edyta Kostrzewa-Susłow, Joanna Bronikowska, Dagmara Jaworska, Tomasz Janeczko, Zenon P Czuba, Wojciech Krol
JournalMolecules (Basel, Switzerland) (Molecules) Vol. 17 Issue 10 Pg. 11693-711 (Oct 01 2012) ISSN: 1420-3049 [Electronic] Switzerland
PMID23027370 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Antineoplastic Agents
  • Flavanones
  • Receptors, Death Domain
  • Receptors, TNF-Related Apoptosis-Inducing Ligand
  • TNF-Related Apoptosis-Inducing Ligand
Topics
  • Antineoplastic Agents (pharmacology, toxicity)
  • Apoptosis (drug effects)
  • Cell Line, Tumor
  • Drug Synergism
  • Flavanones (chemical synthesis, pharmacology, toxicity)
  • HeLa Cells
  • Humans
  • Membrane Potential, Mitochondrial (drug effects)
  • Receptors, Death Domain (metabolism)
  • Receptors, TNF-Related Apoptosis-Inducing Ligand (metabolism)
  • Signal Transduction (drug effects)
  • TNF-Related Apoptosis-Inducing Ligand (pharmacology, toxicity)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: