HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Gamma delta (γδ) T-cells are critical in the up-regulation of inducible nitric oxide synthase at the burn wound site.

AbstractBACKGROUND:
The high incidence of morbidity and mortality following major burn can in part be attributed to immune derangements and wound healing complications. Inflammation plays an important role in wound healing, of which inducible nitric oxide synthase (iNOS) derived nitric oxide is a central mediator. T-cells of the γδ TCR lineage have also been shown to be important in healing of the burn wound site. Nonetheless, the role of γδ T-cells in the regulation of the burn wound iNOS expression is unknown.
METHODS:
Wildtype (WT) and δ TCR(-/-) male C57BL/6 mice were subjected to burn (3rd degree, 12.5% TBSA) or sham treatment. Three days after injury, skin samples from non-injured and the burn wound were collected and analyzed for the expression of iNOS and cytokines and chemokine levels. In a second series of experiments, WT mice were subjected to burn and left untreated or treated with the iNOS inhibitor, L-Nil. Skin cytokine and chemokine levels were assessed 3days thereafter.
RESULTS:
Burn induced an 18-fold increase in iNOS expression at the wound site as compared to the uninjured skin of WT sham mice. In δ TCR(-/-) mice iNOS expression at the wound site was significantly lower than that of the WT group. Burn also induced increased levels of IL-1β, IL-6, G-CSF, TNF-α, KC, MCP-1, MIP-1α and MIP-1β at the wound site in WT and δ TCR(-/-) mice, but G-CSF, TNF-α, and MIP-1β levels were greater in δ TCR(-/-) mice. Inhibition of iNOS activity in WT mice with L-Nil suppressed burn wound levels of IL-1β, G-CSF, and MIP-1α, whereas IL-6, TNF-α, KC, MCP-1 and MIP-1β were unaffected.
CONCLUSIONS:
T-cells of the γδ TCR lineage significantly contribute to the up-regulation of iNOS expression which contributes to wound inflammation.
AuthorsRichard F Oppeltz, Meenakshi Rani, Qiong Zhang, Martin G Schwacha
JournalCytokine (Cytokine) Vol. 60 Issue 2 Pg. 528-34 (Nov 2012) ISSN: 1096-0023 [Electronic] England
PMID22831879 (Publication Type: Journal Article, Research Support, N.I.H., Extramural)
CopyrightCopyright © 2012 Elsevier Ltd. All rights reserved.
Chemical References
  • Chemokines
  • Receptors, Antigen, T-Cell, gamma-delta
  • Nitric Oxide Synthase Type II
Topics
  • Animals
  • Burns (enzymology, pathology)
  • Chemokines (metabolism)
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Nitric Oxide Synthase Type II (antagonists & inhibitors, metabolism)
  • Receptors, Antigen, T-Cell, gamma-delta (metabolism)
  • Skin (enzymology, pathology)
  • Up-Regulation
  • Wound Healing

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: