HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Interleukin-1 receptor-associated kinase M-deficient mice demonstrate an improved host defense during Gram-negative pneumonia.

Abstract
Pneumonia is a common cause of morbidity and mortality and the most frequent source of sepsis. Bacteria that try to invade normally sterile body sites are recognized by innate immune cells through pattern recognition receptors, among which toll-like receptors (TLRs) feature prominently. Interleukin-1 receptor (IL-1R)-associated kinase (IRAK)-M is a proximal inhibitor of TLR signaling expressed by epithelial cells and macrophages in the lung. To determine the role of IRAK-M in host defense against bacterial pneumonia, IRAK-M-deficient (IRAK-M(-/-)) and normal wild-type (WT) mice were infected intranasally with Klebsiella pneumoniae. IRAK-M mRNA was upregulated in lungs of WT mice with Klebsiella pneumonia, and the absence of IRAK-M resulted in a strongly improved host defense as reflected by reduced bacterial growth in the lungs, diminished dissemination to distant body sites, less peripheral tissue injury and better survival rates. Although IRAK-M(-/-) alveolar macrophages displayed enhanced responsiveness toward intact K. pneumoniae and Klebsiella lipopolysaccharide (LPS) in vitro, IRAK-M(-/-) mice did not show increased cytokine or chemokine levels in their lungs after infection in vivo. The extent of lung inflammation was increased in IRAK-M(-/-) mice shortly after K. pneumoniae infection, as determined by semiquantitative scoring of specific components of the inflammatory response in lung tissue slides. These data indicate that IRAK-M impairs host defense during pneumonia caused by a common gram-negative respiratory pathogen.
AuthorsJacobien J Hoogerwerf, Gerritje J W van der Windt, Dana C Blok, Arie J Hoogendijk, Alex F De Vos, Cornelis van 't Veer, Sandrine Florquin, Koichi S Kobayashi, Richard A Flavell, Tom van der Poll
JournalMolecular medicine (Cambridge, Mass.) (Mol Med) Vol. 18 Pg. 1067-75 (Sep 25 2012) ISSN: 1528-3658 [Electronic] England
PMID22729155 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Chemokines
  • Interleukin-6
  • Tumor Necrosis Factor-alpha
  • Interleukin-1 Receptor-Associated Kinases
  • Irak3 protein, mouse
Topics
  • Animals
  • Cell Movement
  • Chemokines (metabolism)
  • Host-Pathogen Interactions (immunology)
  • Immunity (immunology)
  • Interleukin-1 Receptor-Associated Kinases (deficiency, metabolism)
  • Interleukin-6 (metabolism)
  • Klebsiella Infections (complications, immunology, microbiology, pathology)
  • Klebsiella pneumoniae (growth & development, immunology)
  • Lung (immunology, microbiology, pathology)
  • Macrophages, Alveolar (pathology)
  • Mice
  • Mice, Inbred C57BL
  • Neutrophils (pathology)
  • Phagocytosis
  • Pneumonia (complications, immunology, microbiology, pathology)
  • Pneumonia, Bacterial (complications, immunology, microbiology, pathology)
  • Tumor Necrosis Factor-alpha (metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: