HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Synergistic control of Ca2+ mobilization in permeabilized mouse L1210 lymphoma cells by inositol 2,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate.

Abstract
L1210 lymphoma cells were permeabilized with digitonin, and the ability of Ins(2,4,5)P3 and Ins(1,3,4,5)P4 to mobilize intracellular Ca2+ was studied. At high doses of Ins(2,4,5)P3 Ca2+ was rapidly released from intracellular stores, and prior or subsequent addition of Ins(1,3,4,5)P4 had no discernible effect. However, the Ca2(+)-mobilizing action of low (threshold or just above) concentrations of Ins(2,4,5)P3 was markedly enhanced by Ins(1,3,4,5)P4, which alone caused no mobilization of Ca2+; this phenomenon was shown not to be due to protection of Ins(2,4,5)P3 by the Ins(1,3,4,5)P4 against hydrolysis. The ability of the pre-addition of Ins(1,3,4,5)P4 to enhance subsequent Ins(2,4,5)P3-induced Ca2+ mobilization was always seen whether or not the free Ca2+ concentration was low (pCa = 7) or high (pCa = 6). However, at low Ca2+, Ins(1,3,4,5)P4 could cause a further mobilization if added after the Ins(2,4,5)P3, whereas at higher Ca2+ values Ins(1,3,4,5)P4 was only able to affect Ca2+ if added before Ins(2,4,5)P3. These effects of Ins(1,3,4,5)P4 were not, at the same concentration, mimicked by a random mixture of InsP4 isomers obtained by partial acid hydrolysis of phytic acid, by Ins(1,3,4)P3 or by Ins(1,3,4,5,6)P5, and they were shown not to be due to enzymic generation of Ins(1,4,5)P3 from Ins(1,3,4,5)P4 by (a) the absence of any detectable production of Ins(1,4,5)P3 if radiolabelled Ins(1,3,4,5)P4 was used, or (b) the observation that Ins(1,3,4,5,6)P5 could mimic Ins(1,3,4,5)P4 provided that higher doses were used; this inositol phosphate, when added radiolabelled, yielded only trace quantities of D/L-Ins(1,4,5,6)P4, which itself does not mobilize Ca2+. We interpret these results overall to mean that in these cells there is a small proportion of the Ins(2,4,5)P3-mobilizable Ca2+ pools which can only be mobilized in the presence of Ins(1,3,4,5)P4 [or at the least, Ins(1,3,4,5)P4 can help Ins(2,4,5)P3 to gain access to them]. The significance of this conclusion is discussed in the light of current concepts of the second messenger function of Ins(1,3,4,5)P4.
AuthorsP J Cullen, R F Irvine, A P Dawson
JournalThe Biochemical journal (Biochem J) Vol. 271 Issue 2 Pg. 549-53 (Oct 15 1990) ISSN: 0264-6021 [Print] England
PMID2241931 (Publication Type: Journal Article)
Chemical References
  • Inositol Phosphates
  • inositol-1,3,4,5-tetrakisphosphate
  • inositol-1,4,5,6-tetrakisphosphate
  • inositol 2,4,5-trisphosphate
  • Digitonin
  • Calcium
Topics
  • Animals
  • Calcium (metabolism)
  • Cell Membrane Permeability
  • Chromatography, High Pressure Liquid
  • Digitonin
  • Drug Synergism
  • Inositol Phosphates (pharmacology)
  • Lymphoma (metabolism)
  • Mice
  • Tumor Cells, Cultured

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: