HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

A novel p.Gly603Arg mutation in CACNA1F causes Åland island eye disease and incomplete congenital stationary night blindness phenotypes in a family.

AbstractPURPOSE:
To report, for the first time, that X-linked incomplete congenital stationary night blindness (CSNB2A) and Åland island eye disease (AIED) phenotypes coexist in a molecularly confirmed pedigree and to present novel phenotypic characteristics of calcium channel alpha-1F subunit gene (CACNA1F)-related disease.
METHODS:
Two affected subjects (the proband and his maternal grandfather) and an unaffected obligate carrier (the proband's mother) underwent detailed ophthalmological evaluation, fundus autofluorescence imaging, and spectral-domain optical coherence tomography. Goldmann visual field assessment and full-field electroretinogram (ERG) were performed in the two affected subjects, and multichannel flash visual evoked potential was performed on the proband. Scotopic 15 Hz flicker ERG series were performed in both affected subjects to evaluate the function of the slow and fast rod pathways. Haplotype analysis using polymorphic microsatellite markers flanking CACNA1F was performed in all three family members. The proband's DNA was sequenced for mutations in the coding sequence of CACNA1F and nyctalopin (NYX) genes. Segregation analysis was performed in the family.
RESULTS:
Both affected subjects had symptoms of nonprogressive nyctalopia since childhood, while the proband also had photophobia. Both cases had a distance visual acuity of 20/50 or better in each eye, normal contrast sensitivity, and an incomplete type of Schubert-Bornschein ERGs. The proband also had high myopia, a mild red-green color deficit, hypopigmented fundus, and foveal hypoplasia with no evidence of chiasmal misrouting. Spectral-domain optical coherence tomography confirmed the presence of foveal hypoplasia in the proband. The clinical phenotype of the proband and his maternal grandfather fit the clinical description of AIED and CSNB2A, respectively. The fundus autofluorescence and the visual fields were normal in both cases; the scotopic 15 Hz flicker ERG demonstrated only fast rod pathway activity in both. Both affected cases shared the same haplotype across CACNA1F. The proband carried a novel hemizygous c.1807G>C mutation (p.G603R) in the CACNA1F gene. The change segregated with the disease phenotypes and was not identified in 360 control chromosomes. No mutations were identified in NYX.
CONCLUSIONS:
This report of a missense mutation in CACNA1F causing AIED and CSNB2A phenotypes in a family confirms that both diseases are allelic and that other genetic or environmental modifiers influence the expression of CACNA1F. This is the first report to suggest that in CACNA1F-related disease, the rod system activity is predominantly from the fast rod pathways.
AuthorsAjoy Vincent, Tom Wright, Megan A Day, Carol A Westall, Elise Héon
JournalMolecular vision (Mol Vis) Vol. 17 Pg. 3262-70 ( 2011) ISSN: 1090-0535 [Electronic] United States
PMID22194652 (Publication Type: Journal Article)
Chemical References
  • CACNA1F protein, human
  • Calcium Channels, L-Type
Topics
  • Base Sequence
  • Calcium Channels, L-Type (genetics)
  • Child
  • DNA Mutational Analysis
  • Electroretinography
  • Eye Diseases, Hereditary
  • Genetic Diseases, X-Linked (complications, genetics, metabolism)
  • Humans
  • Male
  • Middle Aged
  • Molecular Sequence Data
  • Mutation, Missense
  • Myopia (complications, genetics, metabolism)
  • Night Blindness (complications, genetics, metabolism)
  • Pedigree
  • Phenotype
  • Polymerase Chain Reaction
  • Retinal Rod Photoreceptor Cells (metabolism, pathology)
  • Visual Field Tests

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: