HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Effect of positive end-expiratory pressure on hypoxic pulmonary vasoconstriction in the dog.

Abstract
We studied the effects of uni- and bilateral positive end-expiratory pressure (PEEP) on pulmonary artery pressure-flow (Ppa/Q) relationships during unilateral hypoxia in anesthetized dogs. A bronchial divider was inserted, the right lung was ventilated with 100% O2, and the left lung was ventilated with either 100% O2 (hyperoxia) or a hypoxic gas mixture (hypoxia). Left lung blood flow (QL) and aortic flow (QT) were measured by electromagnetic flow probes. Simultaneous Ppa/Q relations for both lungs, with Q on the ordinate, were obtained by altering QT via an arteriovenous fistula and an inferior vena cava occluder. Ppa/Q slopes (delta Q/delta Ppa) and extrapolated zero-flow Ppa intercepts (Pzf) were obtained by linear regression analysis. Bilateral PEEP increased Pzf for both lungs (P less than 0.01) but did not alter delta Q/delta Ppa of either lung. Unilateral PEEP decreased ipsilateral blood flow (P less than 0.001) and increased Pzf for the ipsilateral lung (P less than 0.05). Left lung PEEP did not affect the slope of the left lung Ppa/Q relationship (delta QL/delta Ppa). Hypoxic ventilation of the left lung decreased QL (P less than 0.001), increased Pzf (P less than 0.05), and decreased delta QL/delta Ppa (P less than 0.001). Neither uni- nor bilateral PEEP altered this flow diversion away from the left lung or the reduction in delta QL/delta Ppa with left lung hypoxia. We conclude that PEEP and alveolar hypoxia increase pulmonary vascular resistance at different loci, such that their effects are additive. A net increase in 10 cmH2O of PEEP does not inhibit the pulmonary vascular response to regional alveolar hypoxia.
AuthorsK B Domino, M R Pinsky
JournalThe American journal of physiology (Am J Physiol) Vol. 259 Issue 3 Pt 2 Pg. H697-705 (Sep 1990) ISSN: 0002-9513 [Print] United States
PMID2204276 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.)
Topics
  • Animals
  • Dogs
  • Hypoxia (physiopathology)
  • Male
  • Positive-Pressure Respiration
  • Pulmonary Circulation
  • Vasoconstriction

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: