HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Genome-wide analysis of a Wnt1-regulated transcriptional network implicates neurodegenerative pathways.

Abstract
Wnt proteins are critical to mammalian brain development and function. The canonical Wnt signaling pathway involves the stabilization and nuclear translocation of β-catenin; however, Wnt also signals through alternative, noncanonical pathways. To gain a systems-level, genome-wide view of Wnt signaling, we analyzed Wnt1-stimulated changes in gene expression by transcriptional microarray analysis in cultured human neural progenitor (hNP) cells at multiple time points over a 72-hour time course. We observed a widespread oscillatory-like pattern of changes in gene expression, involving components of both the canonical and the noncanonical Wnt signaling pathways. A higher-order, systems-level analysis that combined independent component analysis, waveform analysis, and mutual information-based network construction revealed effects on pathways related to cell death and neurodegenerative disease. Wnt effectors were tightly clustered with presenilin1 (PSEN1) and granulin (GRN), which cause dominantly inherited forms of Alzheimer's disease and frontotemporal dementia (FTD), respectively. We further explored a potential link between Wnt1 and GRN and found that Wnt1 decreased GRN expression by hNPs. Conversely, GRN knockdown increased WNT1 expression, demonstrating that Wnt and GRN reciprocally regulate each other. Finally, we provided in vivo validation of the in vitro findings by analyzing gene expression data from individuals with FTD. These unbiased and genome-wide analyses provide evidence for a connection between Wnt signaling and the transcriptional regulation of neurodegenerative disease genes.
AuthorsEric M Wexler, Ezra Rosen, Daning Lu, Gregory E Osborn, Elizabeth Martin, Helen Raybould, Daniel H Geschwind
JournalScience signaling (Sci Signal) Vol. 4 Issue 193 Pg. ra65 (Oct 04 2011) ISSN: 1937-9145 [Electronic] United States
PMID21971039 (Publication Type: Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't)
Chemical References
  • GRN protein, human
  • Intercellular Signaling Peptides and Proteins
  • Nerve Tissue Proteins
  • PSEN1 protein, human
  • Presenilin-1
  • Progranulins
  • WNT1 protein, human
  • Wnt1 Protein
Topics
  • Alzheimer Disease (genetics, metabolism, pathology)
  • Cells, Cultured
  • Frontotemporal Dementia (genetics, metabolism, pathology)
  • Gene Expression Profiling
  • Gene Expression Regulation
  • Genome-Wide Association Study
  • Humans
  • Intercellular Signaling Peptides and Proteins (biosynthesis, genetics)
  • Nerve Tissue Proteins (biosynthesis, genetics)
  • Oligonucleotide Array Sequence Analysis
  • Presenilin-1 (biosynthesis, genetics)
  • Progranulins
  • Transcription, Genetic
  • Wnt Signaling Pathway
  • Wnt1 Protein (genetics, metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: