HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

RhoE deficiency produces postnatal lethality, profound motor deficits and neurodevelopmental delay in mice.

Abstract
Rnd proteins are a subfamily of Rho GTPases involved in the control of actin cytoskeleton dynamics and other cell functions such as motility, proliferation and survival. Unlike other members of the Rho family, Rnd proteins lack GTPase activity and therefore remain constitutively active. We have recently described that RhoE/Rnd3 is expressed in the Central Nervous System and that it has a role in promoting neurite formation. Despite their possible relevance during development, the role of Rnd proteins in vivo is not known. To get insight into the in vivo function of RhoE we have generated mice lacking RhoE expression by an exon trapping cassette. RhoE null mice (RhoE gt/gt) are smaller at birth, display growth retardation and early postnatal death since only half of RhoE gt/gt mice survive beyond postnatal day (PD) 15 and 100% are dead by PD 29. RhoE gt/gt mice show an abnormal body position with profound motor impairment and impaired performance in most neurobehavioral tests. Null mutant mice are hypoactive, show an immature locomotor pattern and display a significant delay in the appearance of the hindlimb mature responses. Moreover, they perform worse than the control littermates in the wire suspension, vertical climbing and clinging, righting reflex and negative geotaxis tests. Also, RhoE ablation results in a delay of neuromuscular maturation and in a reduction in the number of spinal motor neurons. Finally, RhoE gt/gt mice lack the common peroneal nerve and, consequently, show a complete atrophy of the target muscles. This is the first model to study the in vivo functions of a member of the Rnd subfamily of proteins, revealing the important role of Rnd3/RhoE in the normal development and suggesting the possible involvement of this protein in neurological disorders.
AuthorsEnric Mocholí, Begoña Ballester-Lurbe, Gloria Arqué, Enric Poch, Blanca Peris, Consuelo Guerri, Mara Dierssen, Rosa M Guasch, José Terrado, Ignacio Pérez-Roger
JournalPloS one (PLoS One) Vol. 6 Issue 4 Pg. e19236 (Apr 28 2011) ISSN: 1932-6203 [Electronic] United States
PMID21552537 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Rnd3 protein, mouse
  • rho GTP-Binding Proteins
Topics
  • Animals
  • Animals, Newborn
  • Gene Deletion
  • Growth Disorders (enzymology, genetics)
  • Mice
  • Motor Activity (genetics)
  • Nervous System (enzymology, growth & development)
  • Neuromuscular Diseases (enzymology, genetics)
  • Peroneal Nerve (metabolism)
  • Survival Analysis
  • rho GTP-Binding Proteins (deficiency, genetics)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: