HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Quantification of trace levels of the potential cancer biomarkers formaldehyde, acetaldehyde and propanol in breath by SIFT-MS.

Abstract
The sensitivity of selected ion flow tube mass spectrometry, SIFT-MS, has been increased such that it is now possible to detect metabolites present at a part-per-billion, ppb, level in single breath exhalations. However, to utilize this improved sensitivity, the overlaps (coincidences) of those ions resulting from interfering reactions of impurity precursor ions with some breath metabolites present at higher concentrations with the analytical product ions characteristic of particular metabolites must be accounted for. In this paper, the full reaction schemes are presented for SIFT-MS analyses of three volatile potential cancer biomarkers in exhaled breath, namely formaldehyde, HCHO, acetaldehyde, CH(3)CHO and 2-propanol, CH(3)CH(OH)CH(3), which identify both the characteristic SIFT-MS product ions for these compounds and the interfering ions at the same mass-to-charge, m/z, values. An absolute quantification equation accounting for these interferences is formulated and appropriate entries into the SIFT-MS kinetics library are indicated. It is shown that when using H(3)O(+) to quantify formaldehyde and acetaldehyde the reactions of impurity O(2)(+) ions with methanol and ethanol (always present in breath) must be accounted for and that the quantification of acetaldehyde must avoid the interference of the CO(2) present in exhaled breath. Finally, it is indicated that the analysis of 2-propanol can be achieved using both H(3)O(+) and NO(+) precursor ions.
AuthorsPatrik Spaněl, David Smith
JournalJournal of breath research (J Breath Res) Vol. 2 Issue 4 Pg. 046003 (Dec 2008) ISSN: 1752-7155 [Print] England
PMID21386190 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: