HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

The human IGF1R IRES likely operates through a Shine-Dalgarno-like interaction with the G961 loop (E-site) of the 18S rRNA and is kinetically modulated by a naturally polymorphic polyU loop.

Abstract
IGF1R is a proto-oncogene with potent mitogenic and antiapoptotic activities, and its expression must be tightly regulated to maintain normal cellular and tissue homeostasis. We previously demonstrated that translation of the human IGF1R mRNA is controlled by an internal ribosome entry site (IRES), and delimited the core functional IRES to a 90-nucleotide segment of the 5'-untranslated region positioned immediately upstream of the initiation codon. Here we have analyzed the sequence elements that contribute to the function of the core IRES. The Stem2/Loop2 sequence of the IRES exhibits near-perfect Watson-Crick complementarity to the G961 loop (helix 23b) of the 18S rRNA, which is positioned within the E-site on the platform of the 40S ribosomal subunit. Mutations that disrupt this complementarity have a negative impact on regulatory protein binding and dramatically decrease IRES activity, suggesting that the IGF1R IRES may recruit the 40S ribosome by a eukaryotic equivalent of the Shine-Dalgarno (mRNA-rRNA base-pairing) interaction. The homopolymeric Loop3 sequence of the IRES modulates accessibility and limits the rate of translation initiation mediated through the IRES. Two functionally distinct allelic forms of the Loop3 poly(U)-tract are prevalent in the human population, and it is conceivable that germ-line or somatic variations in this sequence could predispose individuals to development of malignancy, or provide a selectable growth advantage for tumor cells.
AuthorsZheng Meng, Nateka L Jackson, Oleg D Shcherbakov, Hyoungsoo Choi, Scott W Blume
JournalJournal of cellular biochemistry (J Cell Biochem) Vol. 110 Issue 2 Pg. 531-44 (May 15 2010) ISSN: 1097-4644 [Electronic] United States
PMID20432247 (Publication Type: Journal Article, Research Support, N.I.H., Extramural)
Chemical References
  • 5' Untranslated Regions
  • DNA Primers
  • MAS1 protein, human
  • Proto-Oncogene Mas
  • RNA, Ribosomal, 18S
  • Receptor, IGF Type 1
Topics
  • 5' Untranslated Regions
  • Alleles
  • Base Sequence
  • Cell Line, Tumor
  • DNA Primers
  • Gene Expression Regulation
  • Genes, Reporter
  • Humans
  • Kinetics
  • Mutagenesis, Site-Directed
  • Mutation
  • Polymerase Chain Reaction
  • Polymorphism, Genetic
  • Proto-Oncogene Mas
  • RNA, Ribosomal, 18S (genetics)
  • Receptor, IGF Type 1 (physiology)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: