HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Associations between polycyclic aromatic hydrocarbon-related exposures and p53 mutations in breast tumors.

AbstractBACKGROUND:
Previous studies have suggested that polycyclic aromatic hydrocarbons (PAHs) may be associated with breast cancer. However, the carcinogenicity of PAHs on the human breast remains unclear. Certain carcinogens may be associated with specific mutation patterns in the p53 tumor suppressor gene, thereby contributing information about disease etiology.
OBJECTIVES:
We hypothesized that associations of PAH-related exposures with breast cancer would differ according to tumor p53 mutation status, effect, type, and number.
METHODS:
We examined this possibility in a population-based case-control study using polytomous logistic regression. As previously reported, 151 p53 mutations among 859 tumors were identified using Surveyor nuclease and confirmed by sequencing.
RESULTS:
We found that participants with p53 mutations were less likely to be exposed to PAHs (assessed by smoking status in 859 cases and 1,556 controls, grilled/smoked meat intake in 822 cases and 1,475 controls, and PAH-DNA adducts in peripheral mononuclear cells in 487 cases and 941 controls) than participants without p53 mutations. For example, active and passive smoking was associated with p53 mutation-negative [odds ratio (OR) = 1.55; 95% confidence interval (CI), 1.11-2.15] but not p53 mutation-positive (OR = 0.77; 95% CI, 0.43-1.38) cancer (ratio of the ORs = 0.50, p < 0.05). However, frameshift mutations, mutation number, G:C-->A:T transitions at CpG sites, and insertions/deletions were consistently elevated among exposed subjects.
CONCLUSIONS:
These findings suggest that PAHs may be associated with specific breast tumor p53 mutation subgroups rather than with overall p53 mutations and may also be related to breast cancer through mechanisms other than p53 mutation.
AuthorsIrina Mordukhovich, Pavel Rossner Jr, Mary Beth Terry, Regina Santella, Yu-Jing Zhang, Hanina Hibshoosh, Lorenzo Memeo, Mahesh Mansukhani, Chang-Min Long, Gail Garbowski, Meenakshi Agrawal, Mia M Gaudet, Susan E Steck, Sharon K Sagiv, Sybil M Eng, Susan L Teitelbaum, Alfred I Neugut, Kathleen Conway-Dorsey, Marilie D Gammon
JournalEnvironmental health perspectives (Environ Health Perspect) Vol. 118 Issue 4 Pg. 511-8 (Apr 2010) ISSN: 1552-9924 [Electronic] United States
PMID20064791 (Publication Type: Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.)
Chemical References
  • DNA Adducts
  • Polycyclic Aromatic Hydrocarbons
  • Tumor Suppressor Protein p53
  • polycyclic aromatic hydrocarbons-DNA adduct
Topics
  • Adult
  • Aged
  • Aged, 80 and over
  • Breast Neoplasms (blood, chemically induced, genetics)
  • Case-Control Studies
  • DNA Adducts (blood)
  • DNA Mutational Analysis
  • Female
  • Humans
  • Middle Aged
  • Mutation (drug effects, genetics)
  • Polycyclic Aromatic Hydrocarbons (blood, toxicity)
  • Tumor Suppressor Protein p53 (genetics)
  • Young Adult

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: