HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Virus infection elevates transcriptional activity of miR164a promoter in plants.

AbstractBACKGROUND:
Micro RNAs (miRs) constitute a large group of endogenous small RNAs that have crucial roles in many important plant functions. Virus infection and transgenic expression of viral proteins alter accumulation and activity of miRs and so far, most of the published evidence involves post-transcriptional regulations.
RESULTS:
Using transgenic plants expressing a reporter gene under the promoter region of a characterized miR (P-miR164a), we monitored the reporter gene expression in different tissues and during Arabidopsis development. Strong expression was detected in both vascular tissues and hydathodes. P-miR164a activity was developmentally regulated in plants with a maximum expression at stages 1.12 to 5.1 (according to Boyes, 2001) along the transition from vegetative to reproductive growth. Upon quantification of P-miR164a-derived GUS activity after Tobacco mosaic virus Cg or Oilseed rape mosaic virus (ORMV) infection and after hormone treatments, we demonstrated that ORMV and gibberellic acid elevated P-miR164a activity. Accordingly, total mature miR164, precursor of miR164a and CUC1 mRNA (a miR164 target) levels increased after virus infection and interestingly the most severe virus (ORMV) produced the strongest promoter induction.
CONCLUSION:
This work shows for the first time that the alteration of miR pathways produced by viral infections possesses a transcriptional component. In addition, the degree of miR alteration correlates with virus severity since a more severe virus produces a stronger P-miR164a induction.
AuthorsAriel A Bazzini, Natalia I Almasia, Carlos A Manacorda, Vanesa C Mongelli, Gabriela Conti, Guillermo A Maroniche, María C Rodriguez, Ana J Distéfano, H Esteban Hopp, Mariana del Vas, Sebastian Asurmendi
JournalBMC plant biology (BMC Plant Biol) Vol. 9 Pg. 152 (Dec 30 2009) ISSN: 1471-2229 [Electronic] England
PMID20042107 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • MIRN164 microRNA, Arabidopsis
  • MicroRNAs
  • Plant Growth Regulators
  • RNA, Plant
Topics
  • Arabidopsis (genetics, metabolism, virology)
  • Cloning, Molecular
  • Computational Biology
  • Gene Expression Regulation, Developmental
  • Gene Expression Regulation, Plant
  • Genes, Reporter
  • MicroRNAs (genetics, metabolism)
  • Mosaic Viruses (physiology)
  • Plant Diseases (genetics, virology)
  • Plant Growth Regulators (pharmacology)
  • Plants, Genetically Modified (genetics, metabolism, virology)
  • Promoter Regions, Genetic
  • RNA, Plant (genetics)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: