HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Gadolinium Chloride Inhibits the Spontaneous Resolution of Fibrosis in CCL(4)-Induced Cirrhosis.

Abstract
Current evidence indicates that liver fibrosis is dynamic and can be bidirectional, involving phases of progression and regression, and that in addition to increased matrix synthesis, this pathological process involves major changes in the regulation of matrix degradation. There is also evidence that Kupffer cells participate in both fibrogenesis and fibrolysis. Therefore, the aim of the present work was to study the participation of Kupffer cells on the spontaneous resolution of hepatic fibrosis. Cirrhosis was produced by 3 months of chronic CCl(4) intoxication in male Wistar rats, and then CCl(4) was discontinued and two groups were formed: One group received gadolinium chloride (10 mg/kg, IP, daily) and the other received the vehicle (water) only for 2 months. Serum enzyme activities of alkaline phosphatase and alanine aminotransferase and liver lipid peroxidation increased by CCl(4) treatment but returned to normal by discontinuation of CCl(4). GSH, GSH/GSSG, and GSH+GSSG decreased significantly by CCl(4), but withdrawal of CCl(4) restored normal glutathione parameters. Fibrosis increased five-fold and glycogen decreased significantly by CCl(4) treatment, while discontinuation of CCl(4) reversed completely glycogen depletion and partially fibrosis. Gadolinium chloride showed effects only in the content of glycogen and collagen; the former was decreased further and the latter remained elevated despite discontinuation of the toxic agent. Persistent fibrosis induced by gadolinium chloride, a selective inhibitor of Kupffer cells, indicates that these cells play a pivotal role in fibrolysis.
AuthorsEnrique Chávez, Lidia K Alcantar, Mario G Moreno, Pablo Muriel
JournalToxicology mechanisms and methods (Toxicol Mech Methods) Vol. 16 Issue 9 Pg. 507-13 ( 2006) ISSN: 1537-6524 [Electronic] England
PMID20020993 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: