HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Metabolic inhibition strongly inhibits Na+-dependent Mg2+ efflux in rat ventricular myocytes.

Abstract
We measured intracellular Mg2+ concentration ([Mg2+]i) in rat ventricular myocytes using the fluorescent indicator furaptra (25 degrees C). In normally energized cells loaded with Mg2+, the introduction of extracellular Na+ induced a rapid decrease in [Mg2+]i: the initial rate of decrease in [Mg2+]i (initial Delta[Mg2+]i/Deltat) is thought to represent the rate of Na+-dependent Mg2+ efflux (putative Na+/Mg2+ exchange). To determine whether Mg2+ efflux depends directly on energy derived from cellular metabolism, in addition to the transmembrane Na+ gradient, we estimated the initial Delta[Mg2+]i/Deltat after metabolic inhibition. In the absence of extracellular Na+ and Ca2+, treatment of the cells with 1 microM carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone, an uncoupler of mitochondria, caused a large increase in [Mg2+]i from approximately 0.9 mM to approximately 2.5 mM in a period of 5-8 min (probably because of breakdown of MgATP and release of Mg2+) and cell shortening to approximately 50% of the initial length (probably because of formation of rigor cross-bridges). Similar increases in [Mg2+]i and cell shortening were observed after application of 5 mM potassium cyanide (KCN) (an inhibitor of respiration) for > or = 90 min. The initial Delta[Mg2+]i/Deltat was diminished, on average, by 90% in carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone-treated cells and 92% in KCN-treated cells. When the cells were treated with 5 mM KCN for shorter times (59-85 min), a significant decrease in the initial Delta[Mg2+]i/Deltat (on average by 59%) was observed with only a slight shortening of the cell length. Intracellular Na+ concentration ([Na+]i) estimated with a Na+ indicator sodium-binding benzofuran isophthalate was, on average, 5.0-10.5 mM during the time required for the initial Delta[Mg2+]i/Deltat measurements, which is well below the [Na+]i level for half inhibition of the Mg2+ efflux (approximately 40 mM). Normalization of intracellular pH using 10 microM nigericin, a H+ ionophore, did not reverse the inhibition of the Mg2+ efflux. From these results, it seems likely that a decrease in ATP below the threshold of rigor cross-bridge formation (approximately 0.4 mM estimated indirectly in the this study), rather than elevation of [Na+]i or intracellular acidosis, inhibits the Mg2+ efflux, suggesting the absolute necessity of ATP for the Na+/Mg2+ exchange.
AuthorsMichiko Tashiro, Hana Inoue, Masato Konishi
JournalBiophysical journal (Biophys J) Vol. 96 Issue 12 Pg. 4941-50 (Jun 17 2009) ISSN: 1542-0086 [Electronic] United States
PMID19527653 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Uncoupling Agents
  • Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone
  • Sodium
  • Magnesium
  • Potassium Cyanide
Topics
  • Animals
  • Biological Transport
  • Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone (pharmacology)
  • Hydrogen-Ion Concentration
  • Magnesium (metabolism)
  • Myocytes, Cardiac (drug effects, metabolism)
  • Potassium Cyanide (pharmacology)
  • Rats
  • Rats, Wistar
  • Sodium (metabolism)
  • Uncoupling Agents (pharmacology)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: