HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Sorbitol inhibition of glucose metabolism by Streptococcus sanguis 160.

Abstract
Clinical studies in Sweden have shown that the proportion of sorbitol-utilizing strains of Streptococcus sanguis increases in dental plaque from individuals using sorbitol-containing products for prolonged periods. We have undertaken to study the metabolism of glucose and sorbitol by S. sanguis 160, isolated from a subject consuming sorbitol-containing chewing-gum 4 times a day for 4 years. Growth on glucose was inhibited by the presence of sorbitol in the growth medium and sorbitol was utilized in the presence of glucose, albeit, at a slower rate than glucose. In addition, pulses of glucose added to cultures growing on sorbitol resulted in the expulsion of sorbitol from the cell. In order to examine further the relationship of sorbitol and glucose, uptake assays were carried out with S. sanguis 160 grown in continuous culture (pH 7.0, dilution rate = 0.1 h-1) with glucose, sorbitol or nitrogen (sorbitol excess) limitations. The uptake of [14C]-glucose by sorbitol-limited cells, but not by glucose-limited cells, was inhibited by sorbitol, as was glycolysis. Kinetic experiments with glucose-limited cells showed 2 transport systems for glucose with Ks values of 5.2 and 40 microM, and glucose phosphorylation activity by decryptified cells indicated transport by the P-enolpyruvate (PEP) phosphotransferase system (PTS) with lesser activity for an ATP-dependent transport process. Transition from glucose-limited growth to sorbitol-limited growth revealed repression of total [14C]-glucose uptake by intact cells and activity for Enzyme II for glucose (Ellglc) of the PTS measured in membrane preparations in the presence of an excess of the soluble PTS proteins in crude cell-free supernatant fractions.(ABSTRACT TRUNCATED AT 250 WORDS)
AuthorsI R Hamilton, G Svensater
JournalOral microbiology and immunology (Oral Microbiol Immunol) Vol. 6 Issue 3 Pg. 151-9 (Jun 1991) ISSN: 0902-0055 [Print] Denmark
PMID1945498 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Escherichia coli Proteins
  • crr protein, E coli
  • Sorbitol
  • Phosphoenolpyruvate Sugar Phosphotransferase System
  • phosphoenolpyruvate-glucose phosphotransferase
  • Glucose
Topics
  • Dental Plaque (microbiology)
  • Diet, Cariogenic
  • Escherichia coli Proteins
  • Glucose (metabolism)
  • Humans
  • Phosphoenolpyruvate Sugar Phosphotransferase System (antagonists & inhibitors, metabolism)
  • Phosphorylation
  • Sorbitol (metabolism, pharmacology)
  • Streptococcus sanguis (drug effects, enzymology)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: