HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Brca2/Xrcc2 dependent HR, but not NHEJ, is required for protection against O(6)-methylguanine triggered apoptosis, DSBs and chromosomal aberrations by a process leading to SCEs.

Abstract
O(6)-methylguanine (O(6)MeG) is a highly critical DNA adduct induced by methylating carcinogens and anticancer drugs such as temozolomide, streptozotocine, procarbazine and dacarbazine. Induction of cell death by O(6)MeG lesions requires mismatch repair (MMR) and cell proliferation and is thought to be dependent on the formation of DNA double-strand breaks (DSBs) or, according to an alternative hypothesis, direct signaling by the MMR complex. Given a role for DSBs in this process, either homologous recombination (HR) or non-homologous end joining (NHEJ) or both might protect against O(6)MeG. Here, we compared the response of cells mutated in HR and NHEJ proteins to temozolomide and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). The data show that cells defective in HR (Xrcc2 and Brca2 mutants) are extremely sensitive to cell death by apoptosis and chromosomal aberration formation and less sensitive to sister-chromatid exchange (SCE) induction than the corresponding wild-type. Cells defective in NHEJ were not (Ku80 mutant), or only slightly more sensitive (DNA-PK(cs) mutant) to cell death and showed similar aberration and SCE frequencies than the corresponding wild-type. Transfection of O(6)-methylguanine-DNA methyltransferase (MGMT) in all of the mutants almost completely abrogated the genotoxic effects in both HR and NHEJ defective cells, indicating the mutant-specific hypersensitivity was due to O(6)MeG lesions. MNNG provoked H2AX phosphorylation 24-48h after methylation both in wild-type and HR mutants, which was not found in MGMT transfected cells. The gammaH2AX foci formed in response to O(6)MeG declined later in wild-type but not in HR-defective cells. The data support a model where DSBs are formed in response to O(6)MeG in the post-treatment cell cycle, which are repaired by HR, but not NHEJ, in a process that leads to SCEs. Therefore, HR can be considered as a mechanism that causes tolerance of O(6)MeG adducts. The data implicate that down-regulation or inhibition of HR might be a powerful strategy in improving cancer therapy with methylating agents.
AuthorsWynand P Roos, Teodora Nikolova, Steve Quiros, Steffen C Naumann, Olivia Kiedron, Małgorzata Z Zdzienicka, Bernd Kaina
JournalDNA repair (DNA Repair (Amst)) Vol. 8 Issue 1 Pg. 72-86 (Jan 01 2009) ISSN: 1568-7864 [Print] Netherlands
PMID18840549 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • BRCA2 Protein
  • DNA-Binding Proteins
  • Guanine
  • Dacarbazine
  • O-(6)-methylguanine
  • O(6)-Methylguanine-DNA Methyltransferase
  • Temozolomide
Topics
  • Animals
  • Apoptosis
  • BRCA2 Protein (genetics)
  • CHO Cells
  • Cell Death
  • Chromosome Aberrations
  • Cricetinae
  • Cricetulus
  • DNA Breaks, Double-Stranded
  • DNA Repair
  • DNA-Binding Proteins (genetics)
  • Dacarbazine (analogs & derivatives, pharmacology)
  • Down-Regulation
  • Fluorescent Antibody Technique
  • Guanine (analogs & derivatives, metabolism)
  • Mice
  • Mutation
  • O(6)-Methylguanine-DNA Methyltransferase (genetics, metabolism)
  • Recombination, Genetic
  • Sister Chromatid Exchange (genetics)
  • Temozolomide
  • Transfection

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: