HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Effect of pentoxiphylline on the recovery of the preserved rat liver: 31P NMR and ultrastructural studies.

Abstract
Hepatic failure often occurs following transplantation. This is primarily due to cold ischemia during preservation, warm ischemia during implantation, and finally reperfusion damage after transplantation and reflow. The possibility that this ischemia and reperfusion-induced damage can be reduced by preischemic application of a xanthine derivative (pentoxiphylline) was examined using 31P NMR spectroscopy and electron microscopy (EM) studies of bioenergetic and ultrastructural changes in oxygenated erythrocyte-perfused rat livers. EM illustrated that the hepatocytes and the mitochondria appeared to be relatively unaffected by cold preservation of the liver, whereas the endothelial cells lining the sinusoids became disrupted. After reperfusion, NMR spectroscopy showed a partial recovery of ATP levels, and EM indicated progressive mitochondrial injury. This progressive injury to the liver was probably due to endothelial cell damage which resulted in microcirculatory malfunction and free radical formation during reperfusion. Pentoxiphylline pretreated livers showed better preservation of the cell morphology and exhibited better ATP recovery than untreated livers. Pentoxiphylline is known to prevent the loss of precursors of ATP resynthesis by inhibiting AMP dephosphorylation during ischemia and improves the microcirculation via vasodilatory properties following ischemia. Thus, it is concluded that pentoxiphylline may ameliorate ischemia-induced cell damage during transplantation.
AuthorsJ Ellermann, H David, M Lüning, B Gewiese, D Stiller, T Römer, M Plötz, K J Wolf
JournalNMR in biomedicine (NMR Biomed) Vol. 4 Issue 6 Pg. 286-93 (Dec 1991) ISSN: 0952-3480 [Print] England
PMID1816807 (Publication Type: Journal Article)
Chemical References
  • Phosphorus
  • Adenosine Monophosphate
  • Adenosine Triphosphate
  • Pentoxifylline
Topics
  • Adenosine Monophosphate (metabolism)
  • Adenosine Triphosphate (metabolism)
  • Animals
  • Cryopreservation
  • Erythrocytes (physiology)
  • Ischemia (physiopathology, prevention & control)
  • Liver (blood supply, drug effects, ultrastructure)
  • Magnetic Resonance Spectroscopy (methods)
  • Microscopy, Electron
  • Organ Preservation (methods)
  • Pentoxifylline (pharmacology)
  • Phosphorus
  • Rats
  • Rats, Inbred Strains
  • Reperfusion Injury (prevention & control)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: