HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Endotoxemia increases the clearance of mPEGylated 5000-MW quantum dots as revealed by multiphoton microvascular imaging.

Abstract
Imaging the microcirculation is becoming increasingly important in assessing life-threatening disease states. To address this issue in a highly light absorbing and light scattering tissue, we use laser scanning multiphoton microscopy and fluorescent 655-nm 5000-MW methoxy-PEGylated quantum dots to image the functional microcirculation deep in mouse hind limb skeletal muscle. Using this approach, we are able to minimize in vivo background tissue autofluorescence and visualize complete 3-D microvascular units, including feeding arterioles, capillary networks, and collecting venules to depths of 150 to 200 microm. In CD1 mice treated with lipopolysaccharide to model an endotoxemic response to bacterial infection, we find that these quantum dots accumulate at microvascular bifurcations and extravasate from the microcirculation in addition to accumulating in organs (liver, spleen, lung, and kidney). The quantum dots are cleared from the circulation with a first-order elimination rate constant seven times greater than under normal conditions, 1.6+/-0.06 compared to 0.23+/-0.05 h(-1), P<0.05, thereby reducing the imaging time window. In vitro experiments using TNFalpha treated isolated leukocytes suggest that circulating monocytes (phagocytes) increased their nonspecific uptake of quantum dots when activated. In combination with multiphoton microscopy, quantum dots provide excellent in vivo imaging contrast of deep microvascular structures.
AuthorsRyon M Bateman, Kevin C Hodgson, Kapil Kohli, Darryl Knight, Keith R Walley
JournalJournal of biomedical optics (J Biomed Opt) 2007 Nov-Dec Vol. 12 Issue 6 Pg. 064005 ISSN: 1083-3668 [Print] United States
PMID18163821 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Polyethylene Glycols
  • monomethoxypolyethylene glycol
Topics
  • Animals
  • Endotoxemia (blood, pathology)
  • Male
  • Metabolic Clearance Rate
  • Mice
  • Microcirculation (pathology, physiopathology)
  • Microscopy, Confocal (methods)
  • Microscopy, Fluorescence, Multiphoton (methods)
  • Muscle, Skeletal (blood supply)
  • Polyethylene Glycols (chemistry, pharmacokinetics)
  • Quantum Dots
  • Spectroscopy, Near-Infrared (methods)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: