HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Genetics of hypercalciuric nephrolithiasis: renal stone disease.

Abstract
Renal stone disease (nephrolithiasis) affects 5% of adults and is often associated with hypercalciuria. Hypercalciuric nephrolithiasis is a familial disorder in more than 35% of patients, and may occur as a monogenic disorder, or as a polygenic trait involving 3 to 5 susceptibility loci in man and rat, respectively. Studies of monogenic forms of hypercalciuric nephrolithiasis in man, for example, Bartter syndrome, Dent's disease, autosomal dominant hypocalcemic hypercalciuria (ADHH), hypercalciuric nephrolithiasis with hypophosphatemia, and familial hypomagnesemia with hypercalciuria have helped to identify a number of transporters, channels, and receptors that are involved in regulating the renal tubular reabsorption of calcium. Thus, Bartter syndrome, an autosomal recessive disease, is caused by mutations of the bumetanide-sensitive Na-K-Cl (NKCC2) cotransporter, the renal outer-medullary potassium channel (ROMK), the voltage-gated chloride channel, CLC-Kb, or in its beta subunit, Barttin. Dent's disease, an X-linked disorder characterized by low molecular weight proteinuria, hypercalciuria, and nephrolithiasis, is due to mutations of the chloride/proton antiporter, CLC-5; ADHH is associated with activating mutations of the calcium-sensing receptor, which is a G protein-coupled receptor; hypophosphatemic hypercalciuric nephrolithiasis associated with rickets is due to mutations in the type 2c sodium-phosphate cotransporter (NPT2c); and familial hypomagnesemia with hypercalciuria is due to mutations of paracellin-1, which is a member of the claudin family of membrane proteins that form the intercellular tight junction barrier in a variety of epithelia. These studies have provided valuable insights into the renal tubular pathways that regulate calcium reabsorption and predispose to kidney stones and bone disease.
AuthorsMichael J Stechman, Nellie Y Loh, Rajesh V Thakker
JournalAnnals of the New York Academy of Sciences (Ann N Y Acad Sci) Vol. 1116 Pg. 461-84 (Nov 2007) ISSN: 0077-8923 [Print] United States
PMID17872384 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't, Review)
Chemical References
  • Calcium
Topics
  • Animals
  • Calcium (urine)
  • Humans
  • Kidney Calculi (genetics)
  • Models, Animal
  • Quantitative Trait Loci
  • Rats

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: