HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Alleviating peanut allergy using genetic engineering: the silencing of the immunodominant allergen Ara h 2 leads to its significant reduction and a decrease in peanut allergenicity.

Abstract
Peanut allergy is one of the most life-threatening food allergies and one of the serious challenges facing the peanut and food industries. Current proposed solutions focus primarily on ways to alter the immune system of patients allergic to peanut. However, with the advent of genetic engineering novel strategies can be proposed to solve the problem of peanut allergy from the source. The objectives of this study were to eliminate the immunodominant Ara h 2 protein from transgenic peanut using RNA interference (RNAi), and to evaluate the allergenicity of resulting transgenic peanut seeds. A 265-bp-long PCR product was generated from the coding region of Ara h 2 genomic DNA, and cloned as inverted repeats in pHANNIBAL, an RNAi-inducing plant transformation vector. The Ara h 2-specific RNAi transformation cassette was subcloned into a binary pART27 vector to construct plasmid pDK28. Transgenic peanuts were produced by infecting peanut hypocotyl explants with Agrobacterium tumefaciens EHA 105 harbouring the pDK28 construct. A total of 59 kanamycin-resistant peanut plants were regenerated with phenotype and growth rates comparable to wild type. PCR and Southern analyses revealed that 44% of plants stably integrated the transgene. Sandwich ELISA performed using Ara h 2-mAbs revealed a significant (P < 0.05) reduction in Ara h 2 content in several transgenic seeds. Western immunobloting performed with Ara h 2-mAb corroborated the results obtained with ELISA and showed absence of the Ara h 2 protein from crude extracts of several transgenic seeds of the T(0) plants. The allergenicity of transgenic peanut seeds expressed as IgE binding capacity was evaluated by ELISA using sera of patients allergic to peanut. The data showed a significant decrease in the IgE binding capacity of selected transgenic seeds compared to wild type, hence, demonstrating the feasibility of alleviating peanut allergy using the RNAi technology.
AuthorsHortense W Dodo, Koffi N Konan, Fur C Chen, Marceline Egnin, Olga M Viquez
JournalPlant biotechnology journal (Plant Biotechnol J) Vol. 6 Issue 2 Pg. 135-45 (Feb 2008) ISSN: 1467-7652 [Electronic] England
PMID17784907 (Publication Type: Journal Article)
Chemical References
  • 2S Albumins, Plant
  • Allergens
  • Antigens, Plant
  • Ara h 2 allergen, Arachis hypogaea
  • Glycoproteins
  • Plant Proteins
  • Immunoglobulin E
Topics
  • 2S Albumins, Plant
  • Allergens (genetics, immunology)
  • Antigens, Plant
  • Blotting, Southern
  • Enzyme-Linked Immunosorbent Assay
  • Gene Silencing
  • Genetic Engineering
  • Glycoproteins (genetics, immunology)
  • Humans
  • Immunoglobulin E (blood)
  • Kanamycin Resistance
  • Peanut Hypersensitivity (prevention & control, therapy)
  • Plant Proteins (genetics, immunology)
  • Plants, Genetically Modified
  • Polymerase Chain Reaction
  • RNA Interference

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: