HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

A transfectant mosaic xenograft model for evaluation of targeted radiotherapy in combination with gene therapy in vivo.

AbstractUNLABELLED:
For gene therapy to be efficacious in the treatment of cancer, therapeutic transgenes must be limited in their expression to tumor cells and must be expressed at sufficiently high transcriptional levels. Moreover, the inadequacy of gene delivery must be overcome by induction of toxicity to neighboring nontargeted cells. Combining targeted radionuclide therapy with gene therapy using human telomerase promoters has shown promise in these respects, and the efficacy of this scheme has been assessed in vitro using transfectant mosaic tumor spheroids. To enable the evaluation of targeted radiotherapy combined with gene transfer in vivo, we have developed a transfectant mosaic xenograft (TMX) model.
METHODS:
Human telomerase promoters were used to drive expression of the noradrenaline transporter (NAT) transgene in 2 human cell lines (UVW and EJ138). Promoter activity was assessed in xenografts in nude mice by determination of the uptake of the radiopharmaceutical (131)I-metaiodobenzylguanidine ((131)I-MIBG) and by measurement of tumor growth. The efficacy of (131)I-MIBG treatment was also assessed in TMXs to determine the delay in growth of tumors composed of various proportions of NAT-expressing cells-a likely clinical scenario after gene delivery in vivo.
RESULTS:
In terms of induction of the capacity for active uptake of (131)I-MIBG and the resultant inhibition of tumor growth in vivo, both telomerase promoters (hTR and hTERT) were similar in potency to the CMV (cytomegalovirus) promoter as controlling elements for the expression of the NAT transgene. In TMXs derived from UVW and EJ138 cells, (131)I-MIBG uptake was proportional to NAT gene expression (r(s) = 0.910, P < 0.001 for UVW; r(s) = 0.971, P < 0.001 for EJ138). Inhibition of the growth of these tumors correlated with the fraction of NAT-transfected cells (r(s) = 0.910, P < 0.001 for UVW; r(s) = 0.971, P < 0.001 for EJ138), and substantial tumor growth delay was observed when 5% of the xenograft was composed of NAT-positive cells.
CONCLUSION:
TMXs constitute a suitable model to measure the efficacy of cancer gene therapy strategies when <100% of the tumor mass can be targeted to express the therapeutic transgene.
AuthorsRobert J Mairs, Susan C Ross, Anthony G McCluskey, Marie Boyd
JournalJournal of nuclear medicine : official publication, Society of Nuclear Medicine (J Nucl Med) Vol. 48 Issue 9 Pg. 1519-26 (Sep 2007) ISSN: 0161-5505 [Print] United States
PMID17704246 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Iodine Radioisotopes
  • Norepinephrine Plasma Membrane Transport Proteins
  • Radiopharmaceuticals
  • 3-Iodobenzylguanidine
Topics
  • 3-Iodobenzylguanidine (therapeutic use)
  • Animals
  • Bystander Effect
  • Cattle
  • Cell Line, Tumor
  • Combined Modality Therapy
  • Female
  • Gene Transfer Techniques
  • Genetic Therapy
  • Humans
  • Iodine Radioisotopes (therapeutic use)
  • Mice
  • Mice, Nude
  • Neoplasm Transplantation
  • Neoplasms, Experimental (genetics, pathology, radiotherapy)
  • Norepinephrine Plasma Membrane Transport Proteins (genetics, metabolism)
  • Promoter Regions, Genetic
  • Radiopharmaceuticals (therapeutic use)
  • Transplantation, Heterologous

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: