HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Inhibition of radiation-induced clastogenicity by Aegle marmelos (L.) correa in mice bone marrow exposed to different doses of gamma-radiation.

Abstract
The frequency of micronucleated polychromatic (MPCE), normochromatic erythrocytes (MNCE), and polychromatic/normochromatic erythrocyte ratio (PCE/NCE), was studied in the bone marrow of mice orally administered with 0, 200, 225, 250, 275 and 300 mg/kg body weight of hydroalcoholic leaf extract of Aegle marmelos (AME). Treatment of mice with AME, once daily for 5 consecutive days, before exposure to 2 Gy resulted in a significant decline in the frequency of MPCE when compared to the non-drug-treated irradiated control. The greatest reduction in MPCE was observed for 250 mg/kg body weight AME, accompanied by the highest polychromatic erythrocyte to normochromatic erythrocyte ratio, in comparison with the non-drug-treated irradiated control. Therefore, further studies were carried out using this dose of AME, where the animals were administered with 250 mg/kg body weight of AME before exposure to 0, 0.5, 1, 2, 3 and 4 Gy of gamma-radiation and evaluated at 12, 24, 36 and 48 hours post-irradiation. Whole body irradiation of mice to different doses of gamma-radiation resulted in a dose-dependent increase in the frequency of MPCE at all post-irradiation times. Treatment of 250 mg/kg AME orally (p.o.) before irradiation significantly reduced the frequency of MPCE at all post-treatment times. The frequency of MPCE increased with time, reached a peak level at 24 hours, and declined thereafter. The occurrence of MNCE has also shown a pattern similar to MPCE, except that the MNCE frequency reached a peak level by 48 hours. The AME significantly reduced the frequency of MNCE at all post-irradiation times, when compared to the non-drug-treated irradiated group. Treatment of mice with AME before exposure to different doses of gamma-radiation resulted in the inhibition of a radiation-induced decline in the PCE/NCE ratio, when compared with the concurrent irradiated controls. To gain insight into the mechanism of action, AME was tested for its antioxidant effects in cell-free chemical systems using H2O2/FeSO4 to generate hydroxyl (*OH) radicals, which were measured by a fluorescent probe, 2V, 7V-dichlorofluorescin diacetate (DCFH/DA). Xanthine/xanthine oxidase was used to generate superoxide (O2*-) anion radical, which was measured by a fluorescent probe dihydroethidium (DHE). AME significantly reduced fluorescence in a concentration dependent manner, indicating its efficacy to scavenge free radicals. Our results demonstrate that one of the mechanism of reduction in the radiation-induced DNA damage in mice bone marrow by AME may be due to scavenging of free radicals and elevation in the antioxidant status, as previously reported.
AuthorsG C Jagetia, P Venkatesh
JournalHuman & experimental toxicology (Hum Exp Toxicol) Vol. 26 Issue 2 Pg. 111-24 (Feb 2007) ISSN: 0960-3271 [Print] England
PMID17370869 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Plant Extracts
  • Radiation-Protective Agents
Topics
  • Aegle (chemistry)
  • Animals
  • Bone Marrow (drug effects, radiation effects)
  • DNA Damage
  • Gamma Rays
  • Male
  • Mice
  • Micronuclei, Chromosome-Defective (drug effects)
  • Plant Extracts (pharmacology)
  • Plant Leaves (chemistry)
  • Radiation-Protective Agents (pharmacology)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: