HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Increased levels of glutathione S-transferase pi transcript as a mechanism of resistance to ethacrynic acid.

Abstract
Subpopulations of HT 29 human colon carcinoma cells (HT/M and HT/S) were selected for resistance to the glutathione S-transferase (GST) inhibitor ethacrynic acid (EA). Both clones displayed a 2-fold resistance to the selection agent and required its constant presence for the maintenance of the resistant phenotype. Purification and characterization of GST isoforms showed similar profiles in the wild-type (WT) and EA-resistant clones, with microheterogeneous forms of the pi isoenzyme detected in each case. Metabolism of EA in vitro in the presence of GSH and the isolated GST from each cell line was characterized by a biphasic disappearance of the parent drug; the initial rate at which each of these enzymes metabolized EA was similar. These enzymes also displayed similar Km values for 1-chloro-2,4-dinitrobenzene. However, the amount of GST isolated per total cellular protein was 3.0-fold in HT/M and 1.6-fold in HT/S relative to WT in the continuous presence of EA. Under these conditions GST activity was increased by 2.3-fold in HT/M and 3.2-fold in HT/S as were GSH levels (2.7- and 4.1-fold for HT/M and HT/S respectively). When EA was removed, enzyme activity and GSH concentrations decreased to values similar to those of the WT. Slot-blot and Southern analyses of the DNA gave no evidence of GST-pi-gene amplification or rearrangement. However, RNA analyses by both slot-blot and Northern studies indicate a 2.5-3.5-fold elevation in the GST pi transcript in the EA-resistant population. Results from these studies indicate that: (1) maintenance of the EA-resistant phenotype requires constant presence of the agent; (2) the 2-fold resistance to EA can be quantitatively related to a 2-3-fold increase in GST activity and amount which appears to be the result of a 2.5-3.5-fold elevation in GST transcript; (3) EA, a Michael-reaction acceptor, can induce GST at the transcriptional level.
AuthorsS Kuzmich, L A Vanderveer, E S Walsh, F P LaCreta, K D Tew
JournalThe Biochemical journal (Biochem J) Vol. 281 ( Pt 1) Pg. 219-24 (Jan 01 1992) ISSN: 0264-6021 [Print] England
PMID1731759 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, P.H.S.)
Chemical References
  • Isoenzymes
  • Glutathione Transferase
  • Glutathione
  • Ethacrynic Acid
Topics
  • Cell Division (drug effects)
  • Cell Line
  • Colonic Neoplasms
  • Drug Resistance
  • Ethacrynic Acid (metabolism, pharmacology)
  • Glutathione (metabolism)
  • Glutathione Transferase (biosynthesis, genetics, metabolism)
  • Humans
  • Isoenzymes (biosynthesis, genetics, metabolism)
  • Kinetics
  • Transcription, Genetic (drug effects)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: