HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Protection of Veratrum nigrum L. var. ussuriense Nakai alkaloids against ischemia-reperfusion injury of the rat liver.

AbstractAIM:
To investigate the protective effects and possible mechanisms of Veratrum nigrum L.var. ussuriense Nakai alkaloids (VnA) on hepatic ischemia/reperfusion (I/R) injury in rats.
METHODS:
Forty male Wistar rats were randomly divided into four experimental groups (n = 10 in each): (A) Control group (the sham operation group); (B) I/R group (pretreated with normal saline); (C) Small-dose (10 microg/kg) VnA pretreatment group; (D) Large-dose (20 microg/kg) VnA pretreatment group. Hepatic ischemia/reperfusion (Hepatic I/R) was induced by occlusion of the portal vein and the hepatic artery for 90 min, followed by reperfusion for 240 min. The pretreatment groups were administered with VnA intraperitoneally, 30 min before surgery, while the control group and I/R group were given equal volumes of normal saline. Superoxide dismutase (SOD) activity, myeloperoxidase (MPO) activity and nitric oxide (NO) content in the liver tissue at the end of reperfusion were determined and liver function was measured. The expression of intercellular adhesion molecule-1 (ICAM-1) and E-selectin (ES) were detected by immunohistochemical examinations and Western blot analyses.
RESULTS:
The results showed that hepatic I/R elicited a significant increase in the plasma levels of alanine aminotransferase (ALT: 74.53 +/- 2.58 IU/L vs 1512.54 +/- 200.76 IU/L, P < 0.01) and lactic dehydrogenase (LDH: 473.48 +/- 52.17 IU/L vs 5821.53 +/- 163.69 IU/L, P < 0.01), as well as the levels of MPO (1.97 +/- 0.11 U/g vs 2.57 +/- 0.13 U/g, P < 0.01) and NO (69.37 +/- 1.52 micromol/g protein vs 78.39 +/- 2.28 micromol/g protein, P < 0.01) in the liver tissue, all of which were reduced by pretreatment with VnA, respectively (ALT: 1512.54 +/- 200.76 IU/L vs 977.93 +/- 89.62 IU/L, 909.81 +/- 132.76 IU/L, P < 0.01, P < 0.01; LDH: 5821.53 +/- 163.69 IU/L vs 3015.44 +/- 253.01 IU/L, 2448.75 +/- 169.4 IU/L, P < 0.01, P < 0.01; MPO: 2.57 +/- 0.13 U/g vs 2.13 +/- 0.13 U/g, 2.07 +/- 0.05 U/g, P < 0.01, P < 0.01; NO: 78.39 +/- 2.28 micromol/g protein vs 71.11 +/- 1.73 micromol/g protein, 68.58 +/- 1.95 micromol/g protein, P < 0.05, P < 0.01). The activity of SOD (361.75 +/- 16.22 U/mg protein vs 263.19 +/- 12.10 U/mg protein, P < 0.01) in the liver tissue was decreased after I/R, which was enhanced by VnA pretreatment (263.19 +/- 12.10 U/mg protein vs 299.40 +/- 10.80 U/mg protein, 302.09 +/- 14.80 U/mg protein, P < 0.05, P < 0.05). Simultaneously, the histological evidence of liver hemorrhage, polymorphonuclear neutrophil infiltration and the overexpression of ICAM-1 and E-selectin in the liver tissue were observed, all of which were attenuated in the VnA pretreated groups.
CONCLUSION:
The results demonstrate that VnA pretreatment exerts significant protection against hepatic I/R injury in rats. The protective effects are possibly associated with enhancement of antioxidant capacity, reduction of inflammatory responses and suppressed expression of ICAM-1 and E-selectin.
AuthorsZhen-Zhen Wang, Wei-Jie Zhao, Xue-Song Zhang, Xiao-Feng Tian, Yu-Zhu Wang, Feng Zhang, Jin-Chan Yuan, Guo-Zhu Han, Ke-Xin Liu, Ji-Hong Yao
JournalWorld journal of gastroenterology (World J Gastroenterol) Vol. 13 Issue 4 Pg. 564-71 (Jan 28 2007) ISSN: 1007-9327 [Print] United States
PMID17278222 (Publication Type: Journal Article)
Chemical References
  • E-Selectin
  • Veratrum Alkaloids
  • Intercellular Adhesion Molecule-1
  • Nitric Oxide
  • L-Lactate Dehydrogenase
  • Peroxidase
  • Superoxide Dismutase
  • Alanine Transaminase
Topics
  • Alanine Transaminase (blood)
  • Animals
  • Blotting, Western
  • E-Selectin (analysis)
  • Immunohistochemistry
  • Intercellular Adhesion Molecule-1 (analysis)
  • L-Lactate Dehydrogenase (blood)
  • Liver (blood supply, pathology)
  • Male
  • Nitric Oxide (analysis)
  • Peroxidase (metabolism)
  • Rats
  • Rats, Wistar
  • Reperfusion Injury (prevention & control)
  • Superoxide Dismutase (metabolism)
  • Veratrum Alkaloids (therapeutic use)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: