HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

PGC1alpha expression is controlled in skeletal muscles by PPARbeta, whose ablation results in fiber-type switching, obesity, and type 2 diabetes.

Abstract
Mice in which peroxisome proliferator-activated receptor beta (PPARbeta) is selectively ablated in skeletal muscle myocytes were generated to elucidate the role played by PPARbeta signaling in these myocytes. These somatic mutant mice exhibited a muscle fiber-type switching toward lower oxidative capacity that preceded the development of obesity and diabetes, thus demonstrating that PPARbeta is instrumental in myocytes to the maintenance of oxidative fibers and that fiber-type switching is likely to be the cause and not the consequence of these metabolic disorders. We also show that PPARbeta stimulates in myocytes the expression of PGC1alpha, a coactivator of various transcription factors, known to play an important role in slow muscle fiber formation. Moreover, as the PGC1alpha promoter contains a PPAR response element, the effect of PPARbeta on the formation and/or maintenance of slow muscle fibers can be ascribed, at least in part, to a stimulation of PGC1alpha expression at the transcriptional level.
AuthorsMichael Schuler, Faisal Ali, Céline Chambon, Delphine Duteil, Jean-Marc Bornert, Aubry Tardivel, Béatrice Desvergne, Walter Wahli, Pierre Chambon, Daniel Metzger
JournalCell metabolism (Cell Metab) Vol. 4 Issue 5 Pg. 407-14 (Nov 2006) ISSN: 1550-4131 [Print] United States
PMID17084713 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Heat-Shock Proteins
  • PPAR-beta
  • PPARGC1A protein, human
  • Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
  • Transcription Factors
Topics
  • Animals
  • Base Sequence
  • Cells, Cultured
  • Diabetes Mellitus, Type 2 (etiology, metabolism)
  • Gene Deletion
  • Heat-Shock Proteins (metabolism)
  • Mice
  • Molecular Sequence Data
  • Muscle Cells (metabolism)
  • Muscle, Skeletal (metabolism)
  • Obesity (etiology)
  • PPAR-beta (genetics, metabolism)
  • Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
  • Transcription Factors (metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: