HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Large-scale analysis of ion channel gene expression in the mouse heart during perinatal development.

Abstract
The immature and mature heart differ from each other in terms of excitability, action potential properties, contractility, and relaxation. This includes upregulation of repolarizing K(+) currents, an enhanced inward rectifier K(+) (Kir) current, and changes in Ca(2+), Na(+), and Cl(-) currents. At the molecular level, the developmental regulation of ion channels is scantily described. Using a large-scale real-time quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) assay, we performed a comprehensive analysis of ion channel transcript expression during perinatal development in the embryonic (embryonic day 17.5), neonatal (postnatal days 1-2), and adult Swiss-Webster mouse hearts. These data are compared with publicly available microarray data sets (Cardiogenomics project). Developmental mRNA expression for several transcripts was consistent with the published literature. For example, transcripts such as Kir2.1, Kir3.1, Nav1.5, Cav1.2, etc. were upregulated after birth, whereas others [e.g., Ca(2+)-activated K(+) (KCa)2.3 and minK] were downregulated. Cl(-) channel transcripts were expressed at higher levels in immature heart, particularly those that are activated by intracellular Ca(2+). Defining alterations in the ion channel transcriptome during perinatal development will lead to a much improved understanding of the electrophysiological alterations occurring in the heart after birth. Our study may have important repercussions in understanding the mechanisms and consequences of electrophysiological alterations in infants and may pave the way for better understanding of clinically relevant events such as congenital abnormalities, cardiomyopathies, heart failure, arrhythmias, cardiac drug therapy, and the sudden infant death syndrome.
AuthorsM D Harrell, S Harbi, J F Hoffman, J Zavadil, W A Coetzee
JournalPhysiological genomics (Physiol Genomics) Vol. 28 Issue 3 Pg. 273-83 (Feb 12 2007) ISSN: 1531-2267 [Electronic] United States
PMID16985003 (Publication Type: Comparative Study, Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't)
Chemical References
  • Calcium Channels
  • Chloride Channels
  • Cyclic Nucleotide-Gated Cation Channels
  • Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels
  • Ion Channels
  • Potassium Channels
  • Potassium Channels, Calcium-Activated
  • Potassium Channels, Inwardly Rectifying
  • RNA, Messenger
  • Sodium Channels
Topics
  • Animals
  • Calcium Channels (genetics)
  • Chloride Channels (genetics)
  • Cyclic Nucleotide-Gated Cation Channels
  • Gene Expression
  • Heart (embryology, growth & development)
  • Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels
  • Ion Channels (genetics, metabolism)
  • Mice
  • Mice, Transgenic
  • Myocardium (metabolism)
  • Potassium Channels (genetics)
  • Potassium Channels, Calcium-Activated (genetics)
  • Potassium Channels, Inwardly Rectifying (genetics)
  • Protein Array Analysis
  • RNA, Messenger (metabolism)
  • Reverse Transcriptase Polymerase Chain Reaction
  • Sodium Channels (genetics)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: