HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Pharmacological vascular reactivity in isolated diabetic rabbit ciliary artery.

Abstract
Impairment of the ocular circulation induced by diabetes mellitus has not been fully defined, but is thought to be related to hemodynamic changes in the ocular circulation. The purpose of the present study is to investigate the functional and morphological changes occurring in the ciliary artery wall of rabbits with alloxan-induced diabetes mellitus. A single intravenous bolus injection of alloxan (100 mg/kg) was given to each of 26 10-week-old rabbits and 16 sham-injected control rabbits. Twenty weeks later, control rabbits and diabetic rabbits were sacrificed, and their ciliary arteries were mounted in a myograph system. The responses of these arteries to high K+ solution (K-Krebs solution), phenylephrine and carbachol were investigated using isometric tension recording. L-NAME (NG-nitro-l-arginine methyl ester; 100 microM) and indomethacin (1 microM) were also used to test the mechanism causing the carbachol induced relaxation. The arteries were also examined morphologically. The maximum tensions induced by K-Krebs solution in this tissue were not significantly different: 17.2+/-0.8 mN (n=16) in the control rabbits and 17.6+/-0.8 mN (n=23) in the diabetic rabbits (P=0.36). Phenylephrine caused dose-dependent contraction with EC50 values of 1.3+/-0.4 microM (n=6) in the control and 5.1+/-2.3 microM (n=6) in the diabetic rabbits, but there was no significant difference between the two (P=0.36). Carbachol induced dose-dependent relaxations in segments precontracted with K-Krebs solution. These relaxations were significantly reduced in the diabetic rabbits. The maximum relaxation induced by carbachol was 77.0+/-2.4% (10 microM) and 66.4+/-2.5% (100 microM) in the control and diabetic rabbits, respectively. These values were significantly different (P=0.0076). The IC(50) value for carbachol was 396.3+/-58.4 nM (n=16) in the control, and 443.6+/-141.1 nM (n=23) in the diabetic rabbit (P=0.87). Application of a 100 microM nitric oxide synthase inhibitor, L-NAME, significantly inhibited the amplitude of relaxations evoked by carbachol (P=0.0066). However, these relaxations were not inhibited by pretreatment with 1 microM indomethacin (P=0.60). Histologically, the frequency of invaginations was less in the diabetic arterioles with a flattening of the lamina in the diabetic rabbits than in the controls. The cytoplasm of endothelial cells contained large vacuoles, indicating weak adhesion to the lamina. Some endothelial cells even showed vacuolar degeneration due to breakdown of the cell membranes. However, the smooth muscle cells were well preserved in the diabetic rabbit. These results suggest that the mechanism of impairment of ocular circulation induced by diabetes mellitus is mainly the reduction of NO synthase due to endothelial cell dysfunction. Furthermore, the characteristics of rabbits with alloxan-induced diabetes mellitus probably make them a useful model for investigating ocular complications induced by diabetic mellitus.
AuthorsToshiaki Goseki, Hitoshi Ishikawa, Hisaharu Nishimoto, Kimiyo Mashimo, Shigekazu Uga, Takeshi Yoshitomi, Kimiya Shimizu
JournalExperimental eye research (Exp Eye Res) Vol. 83 Issue 6 Pg. 1317-24 (Dec 2006) ISSN: 0014-4835 [Print] England
PMID16979623 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Isotonic Solutions
  • Krebs-Ringer solution
  • Vasoconstrictor Agents
  • Phenylephrine
  • Carbachol
  • Potassium
Topics
  • Animals
  • Carbachol (pharmacology)
  • Ciliary Arteries (drug effects, physiopathology, ultrastructure)
  • Diabetes Mellitus, Experimental (pathology, physiopathology)
  • Diabetic Angiopathies (pathology, physiopathology)
  • Dose-Response Relationship, Drug
  • Isotonic Solutions (pharmacology)
  • Microscopy, Electron
  • Phenylephrine (pharmacology)
  • Potassium (pharmacology)
  • Rabbits
  • Vasoconstriction (drug effects)
  • Vasoconstrictor Agents (pharmacology)
  • Vasodilation (drug effects)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: