HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Primary hyperoxaluria type 1: still challenging!

Abstract
Primary hyperoxaluria type 1, the most common form of primary hyperoxaluria, is an autosomal recessive disorder caused by a deficiency of the liver-specific enzyme alanine: glyoxylate aminotransferase (AGT). This results in increased synthesis and subsequent urinary excretion of the metabolic end product oxalate and the deposition of insoluble calcium oxalate in the kidney and urinary tract. As glomerular filtration rate (GFR) decreases due to progressive renal involvement, oxalate accumulates and results in systemic oxalosis. Diagnosis is still often delayed. It may be established on the basis of clinical and sonographic findings, urinary oxalate +/- glycolate assessment, DNA analysis and, sometimes, direct AGT activity measurement in liver biopsy tissue. The initiation of conservative measures, based on hydration, citrate and/or phosphate, and pyridoxine, in responsive cases at an early stage to minimize oxalate crystal formation will help to maintain renal function in compliant subjects. Patients with established urolithiasis may benefit from extracorporeal shock-wave lithotripsy and/or JJ stent insertion. Correction of the enzyme defect by liver transplantation should be planned, before systemic oxalosis develops, to optimize outcomes and may be either sequential (biochemical benefit) or simultaneous (immunological benefit) liver-kidney transplantation, depending on facilities and access to cadaveric or living donors. Aggressive dialysis therapies are required to avoid progressive oxalate deposition in established end-stage renal disease (ESRD), and minimization of the time on dialysis will improve both the patient's quality of life and survival.
AuthorsPierre Cochat, Aurélia Liutkus, Sonia Fargue, Odile Basmaison, Bruno Ranchin, Marie-Odile Rolland
JournalPediatric nephrology (Berlin, Germany) (Pediatr Nephrol) Vol. 21 Issue 8 Pg. 1075-81 (Aug 2006) ISSN: 0931-041X [Print] Germany
PMID16810517 (Publication Type: Journal Article, Review)
Topics
  • Child
  • Humans
  • Hyperoxaluria, Primary (classification, diagnosis, therapy)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: