HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Astrogliosis is delayed in type 1 interleukin-1 receptor-null mice following a penetrating brain injury.

Abstract
The cytokines IL-1alpha and IL-1beta are induced rapidly after insults to the CNS, and their subsequent signaling through the type 1 IL-1 receptor (IL-1R1) has been regarded as essential for a normal astroglial and microglial/macrophage response. To determine whether abrogating signaling through the IL-1R1 will alter the cardinal astrocytic responses to injury, we analyzed molecules characteristic of activated astrocytes in response to a penetrating stab wound in wild type mice and mice with a targeted deletion of IL-1R1. Here we show that after a stab wound injury, glial fibrillary acidic protein (GFAP) induction on a per cell basis is delayed in the IL-1R1-null mice compared to wild type counterparts. However, the induction of chondroitin sulfate proteoglycans, tenascin, S-100B as well as glutamate transporter proteins, GLAST and GLT-1, and glutamine synthetase are independent of IL-1RI signaling. Cumulatively, our studies on gliosis in the IL-1R1-null mice indicate that abrogating IL-1R1 signaling delays some responses of astroglial activation; however, many of the important neuroprotective adaptations of astrocytes to brain trauma are preserved. These data recommend the continued development of therapeutics to abrogate IL-1R1 signaling to treat traumatic brain injuries. However, astroglial scar related proteins were induced irrespective of blocking IL-1R1 signaling and thus, other therapeutic strategies will be required to inhibit glial scarring.
AuthorsHsiao-Wen Lin, Anirban Basu, Charles Druckman, Michael Cicchese, J Kyle Krady, Steven W Levison
JournalJournal of neuroinflammation (J Neuroinflammation) Vol. 3 Pg. 15 (Jun 30 2006) ISSN: 1742-2094 [Electronic] England
PMID16808851 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: