HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Vaccinia virus mediated p53 gene therapy for bladder cancer in an orthotopic murine model.

AbstractPURPOSE:
We determined if vaccinia virus (VV) mediated delivery of human tumor suppressor p53 is safe and effective for bladder tumor therapy in an orthotopic murine model.
MATERIALS AND METHODS:
We used recombinant VV (rVV) vectors to express transgenes in murine bladder cancer MB-49 cells in culture and those growing orthotopically in syngeneic mice. Cultured MB-49 cells were infected with rVV expressing reporter genes (rVV-L15) or p53 (rVV-TK-53) to measure virus infection and apoptosis induction. Orthotopic MB-49 tumors in C57/Bl6 mice were treated with intravesical instillation of rVV, and the tumor incidence, survival and transgene expression were determined.
RESULTS:
Productive virus infection in vitro was observed in MB-49 cells, although at somewhat lower efficiency than in African Green Monkey kidney CV-1 cells (American Type Culture Collection, Manassas, Virginia). Expression of transgenes in vitro correlated with the virus dose. Cells infected with rVV underwent apoptosis with rVV-TK-53 inducing far greater cell death than rVV-L15. The rVV-L15 virus had no effect on tumor incidence but it increased mean survival compared with control. Instillation of rVV-TK-53 decreased the tumor incidence and 33% of mice survived treatment. At necropsy all nonsurviving mice had bladder tumor, whereas 2 survivors in the rVV-TK-53 treated group were tumor-free. Immunohistochemistry of tumors detected expression of the human p53 gene product in tumor cells.
CONCLUSIONS:
To our knowledge we report for the first time that recombinant vaccinia virus expressing human p53 can induce the death of MB-49 tumor cells in vivo, not only through the lytic effect of the virus, but also through expression of the death inducing p53 transgene. Further studies are needed to shed light on the mechanisms of rVV-TK-53 mediated tumor apoptosis and the antitumor immune response.
AuthorsIstvan Fodor, Tatyana Timiryasova, Bela Denes, Jeff Yoshida, Herbert Ruckle, Michael Lilly
JournalThe Journal of urology (J Urol) Vol. 173 Issue 2 Pg. 604-9 (Feb 2005) ISSN: 0022-5347 [Print] United States
PMID15643273 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.)
Topics
  • Animals
  • Disease Models, Animal
  • Genes, p53
  • Genetic Therapy (methods)
  • Mice
  • Tumor Cells, Cultured
  • Urinary Bladder Neoplasms (therapy)
  • Vaccinia virus

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: