HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Recovery of respiratory function following C2 hemi and carotid body denervation in adult rats: influence of peripheral adenosine receptors.

Abstract
The efficacy of the methylxanthine, theophylline, as a respiratory stimulant has been demonstrated previously in an animal model of spinal cord injury. In this model, an upper cervical (C2) spinal cord hemi paralyzes the ipsilateral hemidiaphragm. Theophylline restores respiratory-related activity in the paralyzed hemidiaphragm via activation of a latent respiratory motor pathway. Antagonism of central adenosine A1 receptors mediates this action. Theophylline also enhances respiratory frequency, f, defined as breaths per minute. Thus, long-term use may result in respiratory muscle or motoneuron fatigue particularly after spinal cord injury. We assessed the effects of an adenosine A1 receptor agonist, N6-p-sulfophenyladenosine (p-SPA) on theophylline's action in our model under standardized recording conditions. Four groups of rats, classified as hemisected/nonhemisected with the carotid bodies denervated (H-CBD or NH-CBD), and hemisected/nonhemisected with the carotid bodies intact (H-CBI or NH-CBI ) were used in the study. Eight days after recovery from carotid denervation, a left C2 hemi was performed in H-CBD rats. C2 hemi was also performed in H-CBI animals, and 24 h later, electrophysiologic experiments on respiratory activity were conducted in both groups of animals. Two groups using nonhemisected controls were also employed as described above. In H-CBD rats, theophylline significantly (P < 0.05) enhanced f and induced respiratory-related activity in the previously quiescent left phrenic nerve. In NH-CBD rats, theophylline significantly enhanced f. In both H-CBD and NH-CBD rats, p-SPA (0.25 mg/kg) did not significantly change theophylline-induced effects. In H-CBI rats, theophylline significantly (P < 0.05) enhanced f and induced activity in the previously quiescent left phrenic nerve. In H-CBI rats, p-SPA reduced the values to pre-theophylline discharge levels. Recovered activity was not obliterated with the agonist. In NH-CBI rats, p-SPA reduced theophylline-induced effects to pre-drug discharge levels. Adenosine A1 and A2A receptor immunoreactivity was detected in the carotid bodies. The significance of our findings is that theophylline-induced effects can be normalized to pre-drug levels by the selective activation of peripheral adenosine A1 receptors. The therapeutic benefits of theophylline, i.e., recovered respiratory function after paralysis, however, persists. The potential therapeutic impact is that respiratory muscle fatigue associated with long-term theophylline use may be minimized by a novel therapeutic approach.
AuthorsHan Bae, Kwaku D Nantwi, Harry G Goshgarian
JournalExperimental neurology (Exp Neurol) Vol. 191 Issue 1 Pg. 94-103 (Jan 2005) ISSN: 0014-4886 [Print] United States
PMID15589516 (Publication Type: Comparative Study, Journal Article, Research Support, U.S. Gov't, P.H.S.)
Chemical References
  • Purinergic P1 Receptor Agonists
  • Receptors, Purinergic P1
  • Theophylline
Topics
  • Animals
  • Carotid Body (drug effects, physiology)
  • Cervical Vertebrae (physiology)
  • Female
  • Parasympathectomy (methods)
  • Purinergic P1 Receptor Agonists
  • Rats
  • Rats, Sprague-Dawley
  • Receptors, Purinergic P1 (physiology)
  • Recovery of Function (drug effects, physiology)
  • Respiration (drug effects)
  • Spinal Cord Injuries (physiopathology)
  • Theophylline (pharmacology)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: