HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Multiple roles of T7 RNA polymerase and T7 lysozyme during bacteriophage T7 infection.

Abstract
T7 RNA polymerase selectively transcribes T7 genes during infection but is also involved in DNA replication, maturation and packaging. T7 lysozyme is an amidase that cuts a bond in the peptidoglycan layer of the cell wall, but it also binds T7 RNA polymerase and inhibits transcription, and it stimulates replication and packaging of T7 DNA. To better understand the roles of these two proteins during T7 infection, mutants of each were constructed or selected and their biochemical and physiological behavior analyzed. The amidase activity of lysozyme is needed for abrupt lysis and release of phage particles but appears to have no role in replication and packaging. The interaction between polymerase and lysozyme stimulates both replication and packaging. Polymerase mutants that gain the ability to grow normally in the absence of an interaction with lysozyme still fail to shut down late transcription and, remarkably, have become hypersensitive to inhibition when lysozyme is able to bind. These lysozyme-hypersensitive polymerases behave without lysozyme similarly to wild-type polymerase with lysozyme: both remain longer at the promoter before establishing a lysozyme-resistant elongation complex and both increase the length of pausing when elongation complexes encounter an eight-base recognition sequence involved in DNA packaging. Replication origins contain T7 promoters, but the role of T7 RNA polymerase in initiating replication is not understood well enough to more than speculate how the lysozyme-polymerase interaction stimulates replication. Maturation and packaging is apparently initiated through interaction between prohead-terminase complexes and transcription elongation complexes paused at the sequence TATCTGT(T/A), well conserved at the right-end of the concatemer junction of T7-like phages. A model that is consistent with the structure of an elongation complex and a large body of mutational and biochemical data is proposed to explain sequence-specific pausing and potential termination at the consensus recognition sequence (C/T)ATCTGT(T/A).
AuthorsXing Zhang, F William Studier
JournalJournal of molecular biology (J Mol Biol) Vol. 340 Issue 4 Pg. 707-30 (Jul 16 2004) ISSN: 0022-2836 [Print] Netherlands
PMID15223315 (Publication Type: Journal Article, Research Support, U.S. Gov't, Non-P.H.S., Research Support, U.S. Gov't, P.H.S.)
Chemical References
  • DNA, Viral
  • Viral Proteins
  • bacteriophage T7 RNA polymerase
  • DNA-Directed RNA Polymerases
  • Amidohydrolases
  • N-Acetylmuramoyl-L-alanine Amidase
  • amidase
Topics
  • Amidohydrolases (metabolism)
  • Amino Acid Substitution
  • Bacteriophage T7 (enzymology, genetics, pathogenicity)
  • DNA Replication
  • DNA, Viral (genetics, metabolism)
  • DNA-Directed RNA Polymerases (antagonists & inhibitors, genetics, metabolism)
  • Gene Expression Regulation (drug effects)
  • Genes, Viral
  • Kinetics
  • Models, Genetic
  • Models, Molecular
  • N-Acetylmuramoyl-L-alanine Amidase (metabolism, pharmacology)
  • Promoter Regions, Genetic
  • Replication Origin
  • Selection, Genetic
  • Transcription, Genetic (drug effects)
  • Viral Proteins

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: