HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Mitochondrial potassium transport: the role of the mitochondrial ATP-sensitive K(+) channel in cardiac function and cardioprotection.

Abstract
Coronary artery disease and its sequelae-ischemia, myocardial infarction, and heart failure-are leading causes of morbidity and mortality in man. Considerable effort has been devoted toward improving functional recovery and reducing the extent of infarction after ischemic episodes. As a step in this direction, it was found that the heart was significantly protected against ischemia-reperfusion injury if it was first preconditioned by brief ischemia or by administering a potassium channel opener. Both of these preconditioning strategies were found to require opening of a K(ATP) channel, and in 1997 we showed that this pivotal role was mediated by the mitochondrial ATP-sensitive K(+) channel (mitoK(ATP)). This paper will review the evidence showing that opening mitoK(ATP) is cardioprotective against ischemia-reperfusion injury and, moreover, that mitoK(ATP) plays this role during all three phases of the natural history of ischemia-reperfusion injury preconditioning, ischemia, and reperfusion. We discuss two distinct mechanisms by which mitoK(ATP) opening protects the heart-increased mitochondrial production of reactive oxygen species (ROS) during the preconditioning phase and regulation of intermembrane space (IMS) volume during the ischemic and reperfusion phases. It is likely that cardioprotection by ischemic preconditioning (IPC) and K(ATP) channel openers (KCOs) arises from utilization of normal physiological processes. Accordingly, we summarize the results of new studies that focus on the role of mitoK(ATP) in normal cardiomyocyte physiology. Here, we observe the same two mechanisms at work. In low-energy states, mitoK(ATP) opening triggers increased mitochondrial ROS production, thereby amplifying a cell signaling pathway leading to gene transcription and cell growth. In high-energy states, mitoK(ATP) opening prevents the matrix contraction that would otherwise occur during high rates of electron transport. MitoK(ATP)-mediated volume regulation, in turn, prevents disruption of the structure-function of the IMS and facilitates efficient energy transfers between mitochondria and myofibrillar ATPases.
AuthorsKeith D Garlid, Pierre Dos Santos, Zi-Jian Xie, Alexandre D T Costa, Petr Paucek
JournalBiochimica et biophysica acta (Biochim Biophys Acta) Vol. 1606 Issue 1-3 Pg. 1-21 (Sep 30 2003) ISSN: 0006-3002 [Print] Netherlands
PMID14507424 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, P.H.S., Review)
Chemical References
  • Cardiotonic Agents
  • Membrane Proteins
  • Potassium Channels
  • mitochondrial K(ATP) channel
  • Potassium
Topics
  • Animals
  • Biological Transport
  • Cardiotonic Agents
  • Humans
  • Membrane Proteins (physiology)
  • Mitochondria, Heart (physiology)
  • Myocardial Reperfusion Injury (prevention & control)
  • Potassium (metabolism)
  • Potassium Channels

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: