HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Release of cellular UDP-glucose as a potential extracellular signaling molecule.

Abstract
Identification of a G protein-coupled receptor activated by UDP-glucose led us to develop a sensitive and specific assay for UDP-glucose mass and to test whether this sugar nucleotide is released as an extracellular signaling molecule. Mechanical stimulation of 1321N1 human astrocytoma cells by a change of medium resulted in an increase in extracellular levels of both ATP and UDP-glucose. Whereas ATP levels peaked within 10 min and subsequently returned to resting extracellular levels of 3 nM, UDP-glucose levels attained a steady state that exceeded that of resting ATP levels by 3- to 5-fold for at least 3 h. Similar rates of basal release of UDP-glucose and ATP (72 and 81 fmol/min/10(6) cells) combined with a rate of UDP-glucose metabolism approximately three times lower than ATP hydrolysis account for the elevated extracellular UDP-glucose levels on resting cells. A medium change also resulted in rapid appearance of UDP-glucose on the luminal surface of highly differentiated polarized human airway epithelial cells but at levels 2- to 3-fold lower than ATP. However, nucleotide sugar levels increased 3- to 5-fold over the ensuing 2 h, whereas ATP levels decayed to a resting level; consequently, resting extracellular UDP-glucose levels exceeded those of ATP by 5- to 10-fold. UDP-glucose also was observed at levels that equaled or exceeded those of ATP in the extracellular medium of Calu-3 airway epithelial, COS-7, CHO-K1, and C6 glioma cells. Consistent with the observation of significant extracellular UDP-glucose levels, expression of the UDP-glucose-activated P2Y(14) receptor in COS-7 cells resulted in G protein-promoted inositol phosphate accumulation that was partially reversed by enzymatic removal of UDP-glucose from the medium. Taken together, these results indicate constitutive release of UDP-glucose from physiologically relevant tissues and suggest that UDP-glucose acts as an autocrine activator of the P2Y(14) receptor. Because cellular UDP-glucose is concentrated in the lumen of the endoplasmic reticulum, we speculate that UDP-glucose release may occur as a result of vesicle transport during trafficking of glycoproteins to the plasma membrane.
AuthorsEduardo R Lazarowski, Deborah A Shea, Richard C Boucher, T Kendall Harden
JournalMolecular pharmacology (Mol Pharmacol) Vol. 63 Issue 5 Pg. 1190-7 (May 2003) ISSN: 0026-895X [Print] United States
PMID12695547 (Publication Type: Journal Article, Research Support, U.S. Gov't, P.H.S.)
Chemical References
  • Uridine Diphosphate Glucose
Topics
  • 3T3 Cells
  • Animals
  • CHO Cells
  • COS Cells
  • Cricetinae
  • Humans
  • Mice
  • Signal Transduction (physiology)
  • Tumor Cells, Cultured
  • Uridine Diphosphate Glucose (metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: