HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Improved iodine radiolabels for monoclonal antibody therapy.

Abstract
A major disadvantage of (131)iodine (I)-labeled monoclonal antibodies (MAbs) for radioimmunotherapy has been the rapid diffusion of iodotyrosine from target cells after internalization and catabolism of the radioiodinated MAbs. We recently reported that a radioiodinated, diethylenetriaminepentaacetic acid-appended peptide, designated immunomedics' residualizing peptide 1 (IMP-R1), was a residualizing iodine label that overcame many of the limitations that had impeded the development of residualizing iodine for clinical use. To determine the factors governing the therapeutic index of the labeled MAb, as well as the factors required for production of radioiodinated MAb in high yield and with high specific activity, variations in the peptide structure of IMP-R1 were evaluated. A series of radioiodinated, diethylenetriaminepentaacetic acid-appended peptide moieties (IMP-R1 through IMP-R8) that differed in overall hydrophilicity and charge were compared. Radioiodinations of the peptides followed by conjugations to disulfide-reduced RS7 (an anti-epithelial glycoprotein-1 MAb) furnished radioimmunoconjugates in good overall incorporations, with immunoreactivities comparable to that of directly radioiodinated RS7. Specific activities of up to 8 mCi/mg and yields > 80% have been achieved. In vitro processing experiments showed marked increases in radioiodine retention with all of the adducts; radioiodine retention at 45 h was up to 86% greater in cells than with directly iodinated RS7. Each of the (125)I-peptide-RS7 conjugates was compared with (131)I-RS7 (labeled by the chloramine-T method) in paired-label biodistribution studies in nude mice bearing human lung tumor xenografts. All of the residualizing substrates exhibited significantly enhanced retention in tumor in comparison to directly radioiodinated RS7, but the nontarget uptakes differed significantly among the residualizing labels. The best labels were IMP-R4 and IMP-R8, showing superior tumor-to-non-tumor ratios by virtue of high tumor uptake and retention and low normal organ uptake, as well as superior radiochemical properties. The therapeutic efficacy of (131)I-IMP-R4-RS7 was compared with that of conventionally (131)I-labeled RS7 and (90)yttrium-RS7 in the nude mice lung cancer model. The therapeutic efficacy of (131)I-IMP-R4-RS7 and (90)yttrium-RS7 were equivalent, and both agents yielded significantly improved control of tumor growth compared with conventional (131)I-labeled RS7.
AuthorsRhona Stein, Serengulam V Govindan, M Jules Mattes, Susan Chen, Linda Reed, Guy Newsome, Bill J McBride, Gary L Griffiths, Hans J Hansen, David M Goldenberg
JournalCancer research (Cancer Res) Vol. 63 Issue 1 Pg. 111-8 (Jan 01 2003) ISSN: 0008-5472 [Print] United States
PMID12517786 (Publication Type: Comparative Study, Journal Article, Research Support, U.S. Gov't, P.H.S.)
Chemical References
  • Antibodies, Monoclonal
  • Iodine Radioisotopes
Topics
  • Adenocarcinoma (radiotherapy)
  • Animals
  • Antibodies, Monoclonal (pharmacokinetics)
  • Humans
  • Iodine Radioisotopes (pharmacokinetics, therapeutic use)
  • Lung Neoplasms (radiotherapy)
  • Mice
  • Mice, Nude
  • Radioimmunotherapy (methods)
  • Tissue Distribution
  • Transplantation, Heterologous
  • Tumor Cells, Cultured

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: