HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Pharmacodynamics of the new fluoroquinolone gatifloxacin in murine thigh and lung infection models.

Abstract
Gatifloxacin is a new 8-methoxy fluoroquinolone with enhanced activity against gram-positive cocci. We used the neutropenic murine thigh infection model to characterize the time course of antimicrobial activity of gatifloxacin and determine which pharmacokinetic (PK)-pharmacodynamic (PD) parameter best correlated with efficacy. The thighs of mice were infected with 10(6.5) to 10(7.4) CFU of strains of Staphylococcus aureus, Streptococcus pneumoniae, or Escherichia coli, and the mice were then treated for 24 h with 0.29 to 600 mg of gatifloxacin per kg of body weight per day, with the dose fractionated for dosing every 3, 6, 12, and 24 h. Levels in serum were measured by microbiologic assay. In vivo postantibiotic effects (PAEs) were calculated from serial values of the log(10) numbers of CFU per thigh 2 to 4 h after the administration of doses of 8 and 32 mg/kg. Nonlinear regression analysis was used to determine which PK-PD parameter best correlated with the numbers of CFU per thigh at 24 h. Pharmacokinetic studies revealed peak/dose values of 0.23 to 0.32, area under the concentration-time curve (AUC)/dose values of 0.47 to 0.62, and half-lives of 0.6 to 1.1 h. Gatifloxacin produced in vivo PAEs of 0.2 to 3.1 h for S. pneumoniae and 0.4 to 2.3 h for S. aureus. The 24-h AUC/MIC was the PK-PD parameter that best correlated with efficacy (R(2) = 90 to 94% for the three organisms, whereas R(2) = 70 to 81% for peak level/MIC and R(2) = 48 to 73% for the time that the concentration in serum was greater than the MIC). There was some reduced activity when dosing every 24 h was used due to the short half-life of gatifloxacin in mice. In subsequent studies we used the neutropenic and nonneutropenic murine thigh and lung infection models to determine if the magnitude of the AUC/MIC needed for the efficacy of gatifloxacin varied among pathogens (including resistant strains) and infection sites. The mice were infected with 10(6.5) to 10(7.4) CFU of four isolates of S. aureus (one methicillin resistant) per thigh, nine isolates of S. pneumoniae (two penicillin intermediate, four penicillin resistant, and two ciprofloxacin resistant) per thigh, four isolates of the family Enterobacteriaceae per thigh, a single isolate of Pseudomonas aeruginosa per thigh, and 10(8.3) CFU of Klebsiella pneumoniae per lung. The mice were then treated for 24 h with 0.29 to 600 mg of gatifloxacin per kg every 6 or 12 h. A sigmoid dose-response model was used to estimate the dose (in milligrams per kilogram per 24 h) required to achieve a net bacteriostatic effect over 24 h. MICs ranged from 0.015 to 8 microg/ml. The 24-h AUC/MICs for each static dose (1.7 to 592) varied from 16 to 72. Mean +/- standard deviation 24-h AUC/MICs for isolates of the family Enterobacteriaceae, S. pneumoniae, and S. aureus were 41 +/- 21, 52 +/- 20, and 36 +/- 9, respectively. Methicillin, penicillin, or ciprofloxacin resistance did not alter the magnitude of the AUC/MIC required for efficacy. The 24-h AUC/MICs required to achieve bacteriostatic effects against K. pneumoniae were quite similar in the thigh and lung (70 versus 56 in neutropenic mice and 32 versus 43 in nonneutropenic mice, respectively). The magnitude of the 24-h AUC/MIC of gatifloxacin required for efficacy against multiple pathogens varied only fourfold and was not significantly altered by drug resistance or site of infection.
AuthorsD Andes, W A Craig
JournalAntimicrobial agents and chemotherapy (Antimicrob Agents Chemother) Vol. 46 Issue 6 Pg. 1665-70 (Jun 2002) ISSN: 0066-4804 [Print] United States
PMID12019073 (Publication Type: Journal Article)
Chemical References
  • Anti-Infective Agents
  • Fluoroquinolones
  • Gatifloxacin
Topics
  • Animals
  • Anti-Infective Agents (pharmacokinetics, pharmacology)
  • Area Under Curve
  • Bacteria (drug effects)
  • Bacterial Infections (drug therapy, microbiology)
  • Dose-Response Relationship, Drug
  • Female
  • Fluoroquinolones
  • Gatifloxacin
  • Lung (microbiology)
  • Mice
  • Mice, Inbred ICR
  • Microbial Sensitivity Tests
  • Muscular Diseases (drug therapy, microbiology)
  • Pneumonia, Bacterial (drug therapy, microbiology)
  • Time Factors

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: