HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Altered brain phosphocreatine and ATP regulation when mitochondrial creatine kinase is absent.

Abstract
In cerebral gray matter, ATP concentration is closely maintained despite rapid, large increases in turnover and low substrate reserves. As seen in vivo by (31)P nuclear magnetic resonance (NMR) spectroscopy, brain ATP is stable early in seizures, a state of high energy demand, and in mild hypoxia, a state of substrate deficiency. Like other tissues with high and variable ATP turnover, cerebral gray matter has high phosphocreatine (PCr) concentration and both cytosolic and mitochondrial creatine kinase (UbMi-CK) isoenzymes. To understand the physiology of brain creatine kinases, we used (31)P NMR to study PCr and ATP regulation during seizures and hypoxia in mice with targeted deletion of the UbMi-CK gene. The baseline CK reaction rate constant (k) was higher in mutants than wild-types. During seizures, PCr and ATP decreased in mutants but not in wild-types. The k-value for the CK catalyzed reaction rate increased in wild-types but not in the mutants. Hypoxic mutants and wild-types showed similar PCr losses and stable ATP. During recovery from hypoxia, brain PCr and ATP concentrations returned to baseline in wild-types but were 20% higher than baseline in the mutants. We propose that UbMi-CK couples ATP turnover to the CK catalyzed reaction rate and regulates ATP concentration when synthesis is increased.
AuthorsT Kekelidze, I Khait, A Togliatti, J M Benzecry, B Wieringa, D Holtzman
JournalJournal of neuroscience research (J Neurosci Res) Vol. 66 Issue 5 Pg. 866-72 (Dec 01 2001) ISSN: 0360-4012 [Print] United States
PMID11746413 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, P.H.S.)
CopyrightCopyright 2001 Wiley-Liss, Inc.
Chemical References
  • Convulsants
  • Isoenzymes
  • Phosphocreatine
  • Adenosine Triphosphate
  • Creatine Kinase
  • Creatine Kinase, Mitochondrial Form
  • Acid Anhydride Hydrolases
  • Nucleoside-Triphosphatase
  • Pentylenetetrazole
Topics
  • Acid Anhydride Hydrolases (metabolism)
  • Adenosine Triphosphate (metabolism)
  • Animals
  • Brain (enzymology)
  • Convulsants (pharmacology)
  • Creatine Kinase (deficiency, genetics)
  • Creatine Kinase, Mitochondrial Form
  • Gene Expression Regulation, Enzymologic (genetics)
  • Hypoxia, Brain (enzymology, physiopathology)
  • Immunohistochemistry
  • Isoenzymes (deficiency, genetics)
  • Magnetic Resonance Spectroscopy
  • Mice
  • Mice, Knockout
  • Mitochondria (enzymology)
  • Nucleoside-Triphosphatase
  • Pentylenetetrazole (pharmacology)
  • Phosphocreatine (metabolism)
  • Seizures (enzymology, physiopathology)
  • Subcellular Fractions (metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: