HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Genetic and reproductive toxicity of butadiene and isoprene.

Abstract
Butadiene (BD) and its 2-methyl analogue, isoprene, have been extensively studied in animals and BD in population studies. Both chemicals are metabolised by liver cytochrome P450 dependent monogenases to monoepoxide and diepoxide intermediates. The diepoxide intermediates of both compounds were mutagenic in Salmonella typhimurium. However, unlike the monoepoxide of BD, the monoepoxides of isoprene were not mutagenic. It appears that they have no alkylating capacity. BD did not induce somatic cell mutation and recombination or sex-linked recessive lethal mutation in Drosophila melanogaster and isoprene produced no increase in chromosomal aberrations in CHO cells in vitro. Comparative concentrations of haemoglobin adducts in the blood of mice and rats after exposure to BD indicated that reaction with blood may decrease the levels of reactive intermediates available to tissues in rats, but not in mice contributing to greater potency of BD in the mouse. For isoprene, the adducts reach approximately the same concentrations in both species. DNA adducts have also been detected in testicular and lung cells of mice after BD exposure. The level of epoxybutene haemoglobin adducts was significantly elevated in BD-exposed workers, but lower than in rats and mice. In conjunction with the toxicology and carcinogenesis studies for BD and isoprene, additional mice were included for the evaluation of cytogenetic effects. Both chemicals produced increases in sister chromatid exchanges in bone marrow cells and in the frequency of micronuclei in normochromatic and polychromatic erythrocytes, but only BD produced an increase in the percent of bone marrow cells with chromosomal aberrations. At similar doses, the effects with BD were 2-3 times larger than with isoprene. There were also increased hprt mutation frequencies in rats and mice after BD exposure. Biomonitoring studies with hprt mutations in lymphocytes showed conflicting results, with both positive and negative findings. BD has been shown to be positive in one human cytogenetic biomonitoring study and not in three others, but chromosomal aberrations were increased in BD-exposed workers after challenge with gamma rays. Re-analysis of GSTTI null individuals showed positive results. There was an increase in spermatid micronuclei in mice by BD and its metabolites and in rats only by its metabolites. The cytotoxic response of germ cells in mice is greater than in rats. Dominant lethal mutations have been induced by BD and diepoxybutane, but not by epoxybutene. There was some evidence of congenital malformations in mice after BD exposure and there was a linear concentration-related induction of heritable translocations in mice. There was no induction of dominant lethal mutations or congenital malformations in rats. Using the heritable translocation data in mice, it has been determined that if a worker is continually exposed over 5 or 6 weeks to 20-25 ppm of BD, the risk of producing a child with a balanced reciprocal translocation is twice as high as the background risk. Since genetic damage cannot be measured directly in human germ cells, risk to such cells can also be estimated from germ cells and somatic cells of the mouse and human somatic cells using the parallelogram approach. Using doubling doses, the fourth corner of the parallelogram was calculated as a doubling dose for human germ cells of 4390 ppm/h. However, it is still questioned if man is more like rat than mouse in terms of sensitivity to exposure. Similar germ cell data do not exist for isoprene. In conventional developmental studies, where rats and mice were exposed to BD, maternal toxicity was shown in rats but there was no evidence of developmental toxicity or teratogenic effects and there was a small effect on sperm morphology. After exposure to isoprene, there was no adverse effect on rat dams or other reproductive indices. In mice, there was reduced foetal body weight and decreased maternal weight gain and isoprene also affected ovarian follicles. There was a reduction in testicular function parameters such as testicular weight and sperm motility.
AuthorsD Anderson
JournalChemico-biological interactions (Chem Biol Interact) Vol. 135-136 Pg. 65-80 (Jun 01 2001) ISSN: 0009-2797 [Print] Ireland
PMID11397382 (Publication Type: Journal Article, Review)
Chemical References
  • Butadienes
  • Hemiterpenes
  • Mutagens
  • Pentanes
  • isoprene
Topics
  • Animals
  • Butadienes (metabolism, toxicity)
  • Female
  • Hemiterpenes
  • Humans
  • Male
  • Mice
  • Mutagenicity Tests
  • Mutagens (toxicity)
  • Occupational Exposure
  • Ovary (drug effects)
  • Pentanes
  • Pregnancy
  • Rats
  • Reproduction (drug effects)
  • Testis (drug effects)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: