HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Facilitation of the cellular uptake of a triplex-forming oligonucleotide by novel polyamine analogues: structure-activity relationships.

Abstract
The inefficient uptake of oligodeoxynucleotides, including that of TFO, through the cell membrane is a limiting factor in developing gene therapy approaches for cancer and other diseases. To develop a new strategy for oligonucleotide delivery into the nucleus, we synthesized a series of novel polyamine analogues and examined their effects on the uptake of a 37-mer [32P]-labeled TFO, targeted to the promoter region of c-myc oncogene. We used MCF-7 breast cancer cells to investigate the efficacy of polyamines on the internalization of the TFO. The uptake of TFO was enhanced by complexing it with several unsubstituted polyamine analogues at 0. 1-5 microM concentrations, with up to 6-fold increase in TFO uptake in the presence of a hexamine, 1,21-diamino-4,9,13, 18-tetraazahenicosane (H2N(CH2)(3)NH(CH2)(4)NH(CH2)(3)NH(CH2)(4)NH(CH2)(3)NH(2) or 3-4-3-4-3). TFO uptake increased with the cationicity of the polyamines; however, bis(ethyl) substitution and structural features of the methylene bridging region had significant effects on TFO uptake. The majority of labeled TFO was recovered from the nuclear fraction containing genomic DNA. Electrophoretic mobility shift assay revealed enhanced binding of TFO to a target duplex containing promoter region sequence of c-myc oncogene. Treatment of MCF-7 cells with the TFO complexed with 0.5 microM 3-4-3-4-3 suppressed c-myc mRNA level by 65%, as determined by Northern blot analysis. These data indicate a novel approach to deliver oligodeoxynucleotides to the cell nucleus, and suppress the expression of target genes, and provide new insights into the mechanism of oligonucleotide transport in living cells.
AuthorsR M Thomas, T Thomas, M Wada, L H Sigal, A Shirahata, T J Thomas
JournalBiochemistry (Biochemistry) Vol. 38 Issue 40 Pg. 13328-37 (Oct 05 1999) ISSN: 0006-2960 [Print] United States
PMID10529208 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, P.H.S.)
Chemical References
  • 1,21-diamino-4,9,13,18-tetraazahenicosane
  • Macromolecular Substances
  • Oligodeoxyribonucleotides
  • Polyamines
  • triplex DNA
  • DNA
Topics
  • Breast Neoplasms
  • Cell Fractionation
  • Cell Nucleus (metabolism)
  • Cytoplasm (metabolism)
  • DNA (chemistry, metabolism)
  • Gene Expression Regulation (drug effects)
  • Genes, myc (drug effects)
  • Humans
  • Macromolecular Substances
  • Nucleic Acid Conformation
  • Oligodeoxyribonucleotides (chemistry, metabolism, pharmacology)
  • Polyamines (chemistry, metabolism, pharmacology)
  • Structure-Activity Relationship
  • Time Factors
  • Tumor Cells, Cultured

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: